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Automatic History Matching of Geothermal Field Performance

S. Finsterle and K. Pruess -

Lawrence Berkeley National Laboratory
Earth Sciences Division
Umversrty of California, Berkeley, USA

SUMMARY - We have developed inverse modeling capabilities for the mult1phase multicomponent numerical simulator
TOUGH2 to facxlnate automatic history matching and parameter estimation based on data obtained during exploitation of
geothermal fields. The ITOUGH2 code allows one to estimate TOUGH2 input parameters based on any type of observation for
which a corresponding ° TOUGH?2 output can be calculated. Furthermore, a detailed residual and error analysis is performed and
the uncertainty of model predictions can be evaluated. This paper focuses on the solution of the inverse problem, i.e. the
determination of model-related parameters by automatically calibrating a conceptual model of the geothermal system against
data obtained during field operation. We first describe the modeling approach used to simulate fluid and heat flow in fractured-
porous media. The inverse problem is then formulated, followed by a brief discussion of the optlmrzatmn algorithm. A
sample problem is given to demonstrate the application of the method to geothermal reservoir data.

1. INTRODUCTION

Predicting the performance of a geothermal field, as well as
the design and optimization of field operations, requires
reliable numerical modeling techniques. This includes a
detailed description of the complex physical processes
controlling multiphase fluid flow and heat transport in

fractured-porous media. This first step will be referred to as

model conceptualizatiOn Furthermore, a site-specific model
has to be developed, i.e. the geometry of the reservoir, its

hydrogeological properties, as well as initial and boundary’

conditions have to be determined. After parameter values are
assxgned in a subsequent calibration process, predictive
reservoir simulation .can be mmated It is important to
realize that the | parameter estimates will always be related to

the structure of the model _both conceptually and»

numencally

This pa’per:focnseévon the solution o’f' the inveree,problem;5

i.e. the determination of model-related reservoir parameters
by automatically calrbratmg a conceptual model of the
geothermal field against data obtained during exploxtatlon
We first describe the modeling approach used to simulate
fluid and heat flow in fractured-porous media. The inverse
problem is then formulated in the framework of maximum
likelihood theory, followed by a brief discussion of the
optimization algorithm. A sample problem is given to
demonstrate the applxcatxon of the method to (synthenc) ﬁeld,
performance data. s

2 MODELING APPROACH
2.1 N "The:Forvyard Problem

We solve the forward problem, i.e. the simulation of ﬂund
and heat flow in a geothermal field, with the TOUGH2 code

(Pruess 1991) Solvmg the forward problem in an efficient
and stable manner is probably the most rmportant step for
automatic parameter estimation. TOUGH?2 is used here to
simulate nonisothermal flow of a single component (water)
in two co-existent phases (liquid, vapor).

The mass and energy balance equations for an arbitrary
subdomain Vj, bounded by the surface I, can be written in
the following form:

8 'J.M av= ,JF-n_‘dI"+ Iq v W
Y ',I'n : : ,Vn,

The accumulatron term’ M Tepresents mass (m) or 1ntemal

energy (h) per umt reservoir volume ‘

Mm ¢(Szpz+Svpv) o
Mh ¢(Szplu1+SvPvuv)+(l ¢)PRCRT 3

Here ¢is porosxty, S is saturation, p is densrty, uis mtemal
energy, C ‘is specific heat, and T is temperature. The
subscripts I, v, and ‘R denote liquid, vapor,-and rock,
respectively. The mass flux is a sum over the fluxes in the
11qu1d and vapor phase :

fF,{",-Z —ﬂ (VPp ppg) o ®
o B-lv '

where k denotes the perrneabxllty tensor, ky is relative
permeabrlxty, M is viscosity, Pﬁ is the pressure in phase B,
and g is acceleration of gravity. In Eq. 1, n is the outward
unit normal vector, The total heat flux _containing
conductive and convective components can be written




Fh=KVT+ ) (hgFp) ®)
B=Lv

with K the thermal conductivity of the rock-fluid mixture
and hg the specific enthalpy, which is a nonlinear function
of temperature. Thermophysical properties of liquid water
and vapor are calculated using steam table equations given
by the International Formulation Committee (IFC, 1967).
The continuum equations (1) are discretized in space based
on an integral finite difference formulation (Narasimhan and
Witherspoon, 1976), and a multiple interacting continua
(MINC, Pruess and Narasimhan, 1982, 1985) approach is
used to represent fractured-porous media. Time is discretized

fully implicitly as a first-order finite difference.

Discretization results in a set of nonlinear coupled algebraic
equations which are solved simultaneously by means of
Newton-Raphson iterations. A conjugate gradient algorithm

is used to solve the linear equations arising at each iteration .

step.
2.2 The Inverse Problem

The determination of reservoir properties from performance
data, such as pressures, temperatures, and flow rates, is
referred to as the inverse problem. The indirect approach to
inverse modeling consists of minimizing the differences
between the observed and simulated field responses, which
are assembled in the residual vector r with elements

ri =y;i* - yi(p) ©)

Here y;* is an observation (e.g. pressure, temperature, flow
rate, etc.) at a given point in space and time, and y; is the
corresponding simulator prediction, which depends on vector
p of all unknown or uncertain model parameters, including
initial and boundary conditions. If the error structure of the
residuals is assumed Gaussian and described by a covariance
matrix C, the objective function to be minimized is simply
the sum of the squared residuals weighted by the inverse of
the prior covariance matrix (Finsterle and Pruess, 1995):

Zp)=rTClr Q)

In maximum likelihood theory, it can be shown that
minimizing z is equivalent to maximizing the probability of
reproducing the observed system state. Eq. 7 corresponds to
the generalized nonlinear least squares estimator.

Due to the strong nonlinearities of multiphase flows, an
iterative procedure is required to minimize the objective
function. The Levenberg-Marquardt modification of the
Gauss-Newton algorithm (Levenberg, 1944; Marquardt,
1963) has been found to be the most robust for our
purposes. - The basic idea of this method is to move in the
parameter space along the steepest descent direction far from
the minimum, switching continuously to the Gauss-Newton
algorithm as the minimum is approached. This is achieved
by decreasing a scalar A, known as the Levenberg parameter,
after a successful iteration, but increasing it if an uphill step
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is taken. The following system of equations is solved for

~ Ap at an iteration labeled k:

AT €V Jy + 44D ApkT =-Ji T €1 ®
Here, J is the sensitivity matrix with elements J;; = dy;/0p;.
D denotes a matrix of order n (n being the number of
parameters to be estimated) with elements equivalent to the
diagonal elements of matrix (Jk C-1Jy). The improved
parameter set is finally calculated:

Kk+1 =Pk + APk ()]

Under the assumption of normality and linearity, a detailed
error analysis of the final residuals and the estimated
parameters can be conducted (for details see Finsterle and
Pruess (1995)). For example, the covanance matrix of the
estimated parameter set is given by:

rl C-1

Cpm

(JT c! J)’ (10)
where m is the total number of observations. As a
byproduct of calculating the Jacobian matrix J, one can
qualitatively examine the contribution of each data point to
the solution of the inverse problem as well as the total
parameter sensitivity (for details see Finsterle (1995)).

The inverse modeling formulation outlined above is
implemented in a computer program named ITOUGH2
(Finsterle, 1993). ITOUGH?2 has been applied to a number
of laboratory and field data (Finsterle and Pruess, 1994).

3. APPLICATION

The purpose of this section is to illustrate the use of the
proposed methodology for the characterization of geothermal
fields. ITOUGH2 provides the flexibility to take advantage
of any type of data usually collected during field
exploitation. For the sake of simplicity and reproducibility,
we will analyze a synthetic case. Applications of ITOUGH2
to geothermal field data are described in O'Sullivan and
Bullivant (1995) and White (1995).

We consider a two-dimensional five-spot production-
injection problem previously studied by Pruess (1991) and
Pruess and Wu (1993). Due to the symmetry of the large
well field five-spot configuration, only 1/8 of the basic
pattern needs to be modeled (Fig. 1).

The problem specifications correspond to conditions
typxcally encountered in deeper zones of hot two-phase flow
reservoirs. The medium is assumed to be fractured with
embedded impermeable matrix blocks in the shape of cubes
with side lengths of 50m. The permeable volume fraction
is 2% with a porosity of the fracture domain of 50%.
Reservoir thickness is 305m. Water with an enthalpy of
500 kJ/kg is injected at a rate of 30kg/s. Product:on rate is
also 30kg/s.



toee, Pressure '

 Flow Rates
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Figure 1 - Five-spot well pattem with grid for modeling
1/8 symmetric domain. Observation pomts and type of data
measured is also indicated. _

We assume that temperature and pressure measurements are
taken in the injection (Inj) and production well (Pro) as well
as in .two abandoned wells (W1, W2; see Fig. 1).
Furthermore, liquid and vapor flow rates are measured in the
production well. Note that temperature and pressure mea-
surements are redundant as long as two-phase conditions
prevail. TOUGH2 is run in forward mode to generate data
for five years of field performance history, and random noise
is 'added to simulate measurement errors (see Table 1 for
standard devxauons) .

Subsequently, the TOUGH2 model is automaﬂcally cah-

brated against these observations in order to determine cer-

tain input parameters considered unknown or uncertain. The
parameters include the effective permeability of the fracture
system, porosity, heat.conductivity, specific heat of the rock
grains, fracture spacing a (which is a parameter of the MINC
preprocessor) ‘and the mmal reservoxr temperature T, '

The estimated parameter set is shown in Table 2. The co-
variance and correlation matrices are summarized in Table 3,

and some statistical measures are given in Table 4. The

latter need some explanations. The second column of Table
4 contains the standard deviation 6y, of the estimate which is
the square root of the corresponcf ing’ dxagonal element in
Table 3. '

Table 1'- Observations Used for Model Calibration |
Standard Deviation

Data Type -Location

Pressure Inj/Pro/W1/W2 - 2.00 bar
Temperature - Pro/W1/W2 . 500°C .- -
Liquid flowrate .- Pro - . 1.60 kg/s (~5 %) -
Vapor flow rate Pro 0.08 kg/s (~5 %)

» Table 2 = True, Initial, and Estimated Parameter Set

True Initial Best

Paramete B
i Value ~ Guess  Estimate

log (permeability [m?])  -14.22  -13.00  -1422
fracture zone porosity [-]  0.50  .0.30 0.56
specific heat [J/kg*C) 1000.00 80000  971.00
heat conduct. [W/m'C]  2.10 . 250 . 225
fracture spacing [m] 50.00 . 20.00 50.50
temperature [°C] 300.00 25000  300.10

Table 3 - Variance-Covariance Matrix (Main Diagonal and
Lower Triangle) and Correlation Matrix (Upper Triangle)

log(k) ¢ Cr K a T;

log(k) SE-6 021 017 -025 -021 -0.18

] 2Es 2§63 017 -023 -0.18 -0.04
Ck . 001 023 845 039 053 -007
K -5SE4 -001 1015 079 098 0.29
a -4E-3 -0.08 14.52 827 89.22 0.19

T; 4E-5 2E4 024 0.02 020 0.1

Table 4 - Statistical Measures and Parameter Sensitivity

Parameter Standard *lop Parameter
Deviation Sensitivity
log (permeability {m?]) 0.002 0.88 3623.1
fracture zone porosity [-]  0.05 0.90 19.6
specific heat {J/kg"C] 29.10 0.03 64.7
heat conduct. (W/m'C] = 0.89 0.18 50.5
fracture spacing [m] 9.40 0.03 253.6
temperature ['C] 0.10 0.94 1768.2

Note that this standard deviation refers to the joint
probablllty density function, i.e. it takes into account the
uncertainty of the parameter itself and the influence from
correlated parameters. The conditional standard deviations
Op", on the other hand, reflect the uncertainty of an estimate
provided that all the other parameters are exactly known.
Therefore, the ratio Gp*/Gp, shown in the third column is a
measure of how independently a parameter can be estimated.
A value close to one indicates an independent estimate,
whereas small values can be interpreted as a loss of parame-
ter identifiability due to its correlation to other uncertain
parameters. Fmally, we show the total parameter sensitivity
(column 4) which is the sum of the absolute values of all
sensitivity coefficients, weighted by the inverse of individual

- measurement errors and scaled by a reasonable parameter

vanatxon

First we note that permeability and reservoir temperature are
accurately identified. They are the most sensitive parameters
and can be determined almost independently. The estimates
of fracture spacing, heat conductivity and specific heat
exhibit relatively high standard deviations which is easily
explained by the large correlation coefficients among these
three parameters (see Table 3). Especially the fracture
spacing and heat conductivity have a high positive



correlation coefficient, i.e. a larger fracture spacing can be
almost completely compensated by an increase in heat
conductivity. This statement is true for the type and amount
of data available, i.e. the correlation between these two
parameters may be reduced by taking additional data.
Finally, the fracture porosity can be relanvely well
determined despite its low overall sensmvny This is
simply due to the fact that fracture porosity is only weakly
correlated to the other parameters, resulting in an
independent estimate.

-13.0
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Figure 2 - Optimization path in parameter space (solid
lines). The true values are indicated as dash-dotted lines.

Figure 2 depicts the solution path in the parameter space,
i.e. the updated parameter set after each Levenberg-Marquardt
iteration. The two most sensitive parameters (log(k) and
initial reservoir temperature) quickly converge to the true
values (dash-dotted line), reducing the value of the objective
function (Eq. 7) by more than two orders of magnitude
within four iterations. Fracture spacing is increased from its
initial value of 20 m toward the true value of 50 m, forcing
the less sensitive parameters to actually go away from their
true values according to the correlation rules prevailing at
that time. They later recover after the main parameters have
stabilized. However, this fine-tuning only leads to minor
reductions of the objective function. Fracture zone porosity
as the least sensitive parameter does not seem to converge to
the true value.

The solid lines are the pressures, temperatures, water and
vapor flow rates simulated using the estimated parameter set
(Table 2, column 4). For the first 5 years, the deviations
between the solid lines and the squares minimize Eq. 7.
Beyond 5 years, the solid lines are predictions, i.e. an
extrapolation of the system response matched-during the
calibration period. The model predictions are uncertain due
to uncertainties in the estimated parameters. The standard
deviation of the calculated system response, i.e. the
uncertainty of the predicted temperature in the production
well at a certain point in time, is the square root of the
corresponding diagonal element of matrix C, which is
calculated using first-order error propagation analysis:

C,=JCpIT n

Here, matrix J is the sensitivity matrix for the predicted
system response, and Cp is the covariance matrix of the
estimated parameters (Eq. 10). The resulting error bands on
the model predictions are shown as dash-dotted lines in
Figure 3. They have to be considered optimistic because
only the six parameters analyzed in this study are considered
uncertain. All the other parameters as well as the model
structure are assumed to be exactly known, which of course
is only true for a synthetic case. However, it is interesting
to note that the true system response (triangles) lies within
the estimated error band despite the fact that the parameter
set used for the prediction does not exactly correspond to the
true one. o '

The high accuracy of the model prediction can only be
achieved by a combined inversion of all available data. Itis
obvious that the temperature decrease in observation well
W1 could not have been predicted by relying only on
temperature data during the calibration phase. In fact, the
contribution of temperature measurements to the
determination of the parameter set is minor. This is mainly
due to the fact that a temperature change of 1°C leads to a
vapor pressure change of about 1bar which can be easier
detected given the accuracy of pressure measurements.  As
mentioned earlier, temperature ‘and pressure are not
independent in a single-component two-phase flow system.
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This is reflected by correlation coefficients close to one,
calculated from matrix C,.

Provided that the expected measurement errors (see Table 1,
column 3) are reasonable, the bulk of the information about
the parameters of interest is contained in the accurate vapor
flow rate measurements and the pressure data in the
production well. The contribution of a certain observation
(e.g. flow rate data of a given accuracy taken over the entire
measurement period) to the solution of the inverse problem
can be evaluated by adding up all the absolute values of the
corresponding sensitivity coefficients, weighted by the
expected measurement error and scaled by the inverse of the
parameter variation. This qualitative measure is summarized
in Table 5, column 2. Comparing total sensitivities of
individual observations, one can conclude that accurate

measurements of vapor flow rates and pressures and’

temperatures in the injection and production wells would be
sufficient to solve the inverse problem, i.e., data from the
observation wells are less sensitive in our example. Note
that this kind of an analysis can be performed without
actually taking the data, i.e. it can be used to design and

optimize monitoring systems. Details of such a procedure

are described in Finsterle (1995).

The system response as observed in the injection, production
and observation wells is shown in Figure 3. The squares are
the synthetically generated and perturbed data points used to
calibrate the model. The triangles represent the future
system response for the true parameter set (see Table 2,
column 2).

The standard deviations of the final residual (Table 5,
column 3) are on the order of the measurement errors,
indicating that no significant systematic errors are present.
Finally, the contribution of each observation type to the
final value of the objective function (Table 5, column 4) is
evenly distributed among the measurements, confirming the
choice of the weighting factors in matrix C-1.

Recall that this study was made using synthetic data with
known error structure, and that no systematic errors are made
since the conceptual model is correct. In field applications,
the proper conceptual model and the structure of the random
errors -are not exactly known. Note, however, that the
relative weighting of data points can easily be adjusted and is

partly automated in ITOUGH2 following the suggestions by

Carrera and Neuman (1986). While the problem of
systematic errors is not directly addressed by inverse
modeling, the -automation of the calibration step makes it

possible to examine a number of alternative conceptual -

models. The extensive residual analysis performed by
ITOUGH?2 provides a means to identify aspects of the model

that need to be refined. Moreover, model identification -

criteria (Carrera and Neuman, 1986) are evaluated which help
select the model that most likely represents field conditions.
Successful application of ITOUGH2 to a variety of
laboratory and field data has been demonstrated (Finsterle and
Pruess, 1994, 1995):

-6-

Table § - Total Sensitivity of Observations, Standard
Deviation of Residuals, and Contribution to Objective
Function.

Sensitivity  Std. Dev. .-

Observation COF
Pressure Inj. 789 1.9 9.7
Pressure Pro. - - 1500 2.0 - 103 .
Pressure W1 426 2.2 - 12.5
Pressure W2 358 2.1 11.6
Temperature Pro. 680 4.6 89
Temperature W1 107 54 12.2
Temperature W2 100 52 11.3
Water flow rate 87 1.6 10.5
Vapor flow rate 1735 0.1 13.0

COF: Contribution to Objective Function [%]

4. CONCLUDING REMARKS

The purpose of this study was to demonstrate the flexibility
of an inverse modeling approach for automatic history
matching and the estimation of simulation model parameters
by performing a joint inversion of all available data. In

-addition to automatic model calibration, the ITOUGH2 code

provides a number of semi-quantitative measures to study
parameter sensitivities, correlations between parameters and
observations, prediction uncertainties, total parameter
sensitivities, potential benefits from taking measurements of
a certain kind and in a certain location. This information is
useful for the design and optimization of reservoir
delineation and monitoring programs.

The advantage of inverse modeling procedures is that they
overcome the time and labor intensive tedium of trial-and-
error model calibration. Effective, model-related parameters
are automatically determined on the scale of interest. This
ensures that the reliability of subsequent predictions can be
greatly improved if they are based on the same or a similar
conceptual model of the geothermal reservoir. Matching
data obtained during exploitation of a geothermal field and
predicting the future reservoir performance is an excellent
example of this philosophy.
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