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SUMMARY - We have developed inverse modeling capabilities for the multiphase multicomponent numerical simulator 
TOUGH2 to facilitate automatic history matching and parameter estimation based on data obtained during exploitation of 
geothermal fields. The ITOUGH2 code allows one to estimate TOUGH2 input parameters based on any type of observation for 
which a corresponding TOUGH2 output can be calculated. Furthermore, a detailed residual and error analysis is performed, and 
the uncertainty of model predictions can be evaluated. This paper focuses on the solution of the inverse problem, Le. the 
determination of model-related parameters by automatically calibrating a conceptual model of the geothermal system against 
data obtained during field operation. We first describe the modeling approach used to simulate fluid and heat flow in fractured- 
porous media. The invehe problem is then formulated, followed by a brief discussion of the optimization algorithm. A 
sample problem is given to demonstrate the application of the method to geothermal reservoir data. 

1 .  INTRODUCTION 

Predicting the performance of a geothermal field, as well as 
the design and optimization of field operations, requires 
reliable numerical modeling hniques. This includes a 
detailed description of the plex physical processes 
controlling multiphase fluid flow and heat transport in 
fractured-porous media. This first step will be referred to as 
model conceptualization. Furthermore, a site-specific model 
has to be developed, i.e. the geometry-of the reservoir, its 
hydrogeological properties, as well as initial and boundary 
conditions have to be determined. After parameter values are 
assigned in a subsequent calibration process, predictive 
reservoir simulation can be initiated. It is important to 
realize that the parameter estimates will always be related to 

i.e. the determination of model-related reservoir parameters 
by automatically calibrating a conceptual mode 
geothermal field against data obtained during expl 

e modeling approach used to simulate 
n fractured-porous media.' The inverse 

problem is then formulated in 
likelihood theory, followed b 
optimization algorithm. A sample problem is given to 
demonstrate the 
E= 

MODELING APPROACH 

We solve the forward problem, Le. the simulation of fluid 
and heat flow in a geothermal field, with the TOUGH2 code 

(Pruess, 1991). Solving the forward problem in an efficient 
and stable manner is probably the most important step for 
automatic parameter estimation. TOUGH2 is used here to 
simulate nonisothermal flow of a single component (water) 
in two coexistent phases (liquid, vapor). 
The mass and energy balance equations for an arbitrary 
subdomain Vn bounded by the surface rn can be written in 
the following form: 

& / M d V =  dt j F o n d T +  /qdV (1) 

Vn . r n  Vn 

mass (m) or internal 

Mm (2) @ (SI PI + Sv P V )  

is density, u is internal 
energy, C is specific heat, and T is temperature. The 
subscripts I, v, and R denote liquid, vapor, and rock, 
respectively. The m sum over the fluxes in the 
1 

where k denotes t permeability tensor, kr is relative 
permeability, p is viscosity, P p  is the pressure in phase b, 
and g is acceleration of gravity. In E!q. 1, n is the outward 
unit normal vector. The total heat flux containing 
conductive and convective components can be written 



Fh = -KVT + (hp Fp) 
p=1,v 

is taken. The following system of equations is solved for 
Ap at an iteration labeled k (5) 

with K the thermal conductivity of the rock-fluid mixture 
and hp the specific enthalpy, which is a nonlinear function 
of temperature. Thermophysical properties of liquid water 
and vapor are calculated using steam table equations given 
by the International Formulation Committee (IFC, 1967). 
The continuum equations (1) are discretized in space based 
on an integral finite difference formulation (Narasimhan and 
Witherspoon, 1976), and a multiple interacting continua 
(MINC, Pruess and Narasimhan, 1982, 1985) approach is 
used to represent fractured-porous media. Time is discretized 
fully implicitly as a first-order finite difference. 
Discretization results in a set of nonlinear coupled algebraic 
equations which are solved simultaneously by means of 
Newton-Raphson iterations. A conjugate gradient algorithm 
is used to solve the linear equations arising at each iteration 
step. 

2.2 The Inverse Problem 

The determination of reservoir properties from performance 
data, such as pressures, temperatures, and flow rates, is 
referred to as the inverse problem. The indirect approach to 
inverse modeling consists of minimizing the differences 
between the observed and simulated field responses, which 
are assembled in the residual vector r with elements 

ri = Yi* - Yi(P)  (6) 

Here yi* is an observation (e.g. pressure, temperature, flow 
rate, etc.) at a given point in space and time, and yi is the 
corresponding simulator prediction, which depends on vector 
p of all unknown or uncertain model parameters, including 
initial and boundary conditions. If the error structure of the 
residuals is assumed Gaussian and described by a covariance 
matrix C, the objective function to be minimized is simply 
the sum of the squared residuals weighted by the inverse of 
the prior covariance matrix (Finsterle and Pruess, 1995): 

z(p) = rT C-1 r (n 
In maximum likelihood theory, it can be shown that 
minimizing z is equivalent to maximizing the probability of 
reproducing the observed system state. Eq. 7 corresponds to 
the generalized nonlinear least squares estimator. 

Due to the strong nonlinearities of multiphase flows, an 
iterative procedure is required to minimize the objective 
function. The Levenberg-Marquardt modification of the 
Gauss-Newton algorithm (Levenberg, 1944; Marquardt, 
1963) has been found to be the most robust for our 
purposes. The basic idea of this method is to move in the 
parameter space along the steepest descent direction far from 
the minimum, switching continuously to the Gauss-Newton 
algorithm as the minimum is approached. This is achieved 
by decreasing a scalar A, known as the Levenberg parameter, 
after a successful iteration, but increasing it if an uphill step 

Here, J is the sensitivity matrix with elements JQ = ayi/apj 
D denotes a matrix of order n (n being the number of 
parameters to be estimated) with elements equivalent to the 
diagonal elements of matrix (JkT C-1 Jk). The improved 
parameter set is finally calculated: 

kk+l = Pk + APk (9) 

Under the assumption of normality and linearity, a detailed 
error analysis of the final residuals and the estimated 
parameters can be conducted (for details see Finsterle and 
Pruess (1995)). For example, the covariance matrix of the 
estimated parameter set is given by: 

where m is the total number of observations. As a 
byproduct of calculating the Jacobian matrix J, one can 
qualitatively examine the contribution of each data point to 
the solution of the inverse problem as well as the total 
parameter sensitivity (for details see Finsterle (1995)). 

The inverse modeling formulation outlined above is 
implemented in a computer program named ITOUGH2 
(Finsterle, 1993). ITOUGH2 has been applied to a number 
of laboratory and field data (Finsterle and Pruess, 1994). 

3 .  APPLICATION 

The purpose of this section is to illustrate the use of the 
proposed methodology for the characterization of geothermal 
fields. ITOUGH2 provides the flexibility to take advantage 
of any type of data usually collected during field 
exploitation. For the sake of simplicity and reproducibility, 
we will analyze a synthetic case. Applications of ROUGH2 
to geothermal field data are described in OSullivan and 
Bullivant (1995) and White (1995). 

We consider a two-dimensional five-spot production- 
injection problem previously studied by Pruess (1991) and 
Pruess and Wu (1993). Due to the symmetry of the large 
well field five-spot configuration, only 118 of the basic 
pattern needs to be modeled (Fig. 1). 

The problem specifications correspond to conditions 
typically encountered in deeper zones of hot two-phase flow 
reservoirs. The medium is assumed to be fractured with 
embedded impermeable matrix blocks in the shape of cubes 
with side lengths of 50 m. The permeable volume fraction 
is 2% with a porosity of the fracture domain of 50%.  
Reservoir thickness is 305 m. Water with an enthalpy of 
500 H k g  is injected at a rate of 30 kg/s. Production rate is 
also 30 kg/s. 

?- 
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Five-spot well pattern with grid for modeling 
1/8 symmetric domain. Observation points and type of data 
measured is also indicated. 

at temperature and 
taken in the injection (Inj) and production well (pro) as well 
as in two abandoned wells (Wl, W2; see Fig. 1). 
Furthermore, liquid and vapor flow rates are measured in the 
production well. Note that temperature and pressure mea- 
surements are redundant as long as two-phase conditions 
prevail. TOUGH2 is run in forward mode to generate data 
for five years of field performance history, and random noise 
is added to simulate measurement errors (s 
standard deviations). 

Subsequently, the TOUGH2 model is automatically cali- 
brated against these observations in order to determine cer- 
tain input parameters considered unknown or uncertain. The 
parameters include the effective pemeabil 
system, porosity, heat conductivity, speci 
grains, fracture spacing a (which is a p 

variance and correlation matrices are summarized in Table 3, 
and some statistical measures are given in Table 4. The 
latter need some explanations. The second column of Table 
4 contains the standard deviation CT of the estimate which is 

f the corresponch 

Table 1 - Observatio 
Data Type Location Standard Deviation 
pressure Inj/Pro/Wl/W2 2.00 bar 

,. 

Temperature Prm1/W2 5.00 'C 
Liquid flow rate Pro 1.60 kg/s (-5 %) 
Vapor flow rate Pro 0.08 kgh (-5 %) 

Table 2 - True, Initial, and Estimated Parameter Set 
Parameter True Initial Best 

Value Guess Estimate 
log (permeability [m2]) -14.22 -13.00 -1422 
fracture zone porosity [-] 0.50 0.30 0.56 
specific heat [Jkg'C] 1OOO.00 800.00 971.00 
heat conduct. [w/m'C] 2.10 2.50 2.25 
fracture spacing [m] 50.00 20.00 50.50 
temperature ['C] 300.00 250.00 300.10 

Table 3 - Variance-Covariance Matrix (Main Diagonal and 
Lower Triangle) and Correlation Matrix (Upper Triangle) 
~~ ~ 

log@) @ CR K a Ti 
log(&) 5E-6 0.21 0.17 -0.25 -0.21 -0.18 

2E-5 2E-3 0.17 -0.23 -0.18 -0.04 @ 
CR 
K -5E-4 -0.01 10.15 0.79 0.98 0.29 
a -4E-3 -0.08 14.52 8.27 89.22 0.19 
Ti -4E-5 -2E-4 0.24 0.02 0.20 0.01 

0.01 0.23 845 0.39 0.53 -0.07 

Table 4 - Statistical Measures and Parameter Sensitivity 
Standard Parameter 

Deviation <Tp*/CTp Sensitivity 
Parameter 

log (permeability [m*]) 0.002 0.88 3623.1 
fra_cture zone porosity [-] 0.05 0.90 19.6 

heat conduct. [w/m'C] 0.89 0.18 50.5 
fracture spacing [m] 9.40 0.03 253.6 
temperature ['C] 0.10 0.94 1768.2 

specific heat [Jkg'C] 29.10 0.03 64.7 

Note that this standard deviation refers to the joint 
probability density function, Le. it takes into account the 
uncertainty of the parameter itself and the influence from 
correlated parameters. The conditional standard deviations 
bp*, on the other hand, reflect the uncertainty of an estimate 
provided that all the oFer parameters are exactly known. 
Therefore, the ratio op /op shown in the third column is a 
measure of how independently a parameter can be estimated. 
A value close to one indicates an independent estimate, 
whereas small values can be interpreted as a loss of parame- 
ter identifiability due to its correlation to other uncertain 
parameters. Finally, we show the total parameter sensitivity 
(column 4) which is the sum of the absolute values of all 
sensitivity coefficients, weighted by the inverse of individual 
measurement errors and scaled by a reasonable parameter 
variation. 

First we note that permeability and reservoir temperature are 
accurately identified. They are the most sensitive parameters 
and can be determined almost independently. The estimates 
of fracture spacing, heat conductivity and specific heat 
exhibit relatively high standard deviations which is easily 
explained by the large correlation coefficients among these 
three parameters (see Table 3). Especially the fracture 
spacing and heat conductivity have a high positive 

- 3 -  



correlation coefficient, i.e. a larger fracture spacing can be 
almost completely compensated by an increase in heat 
conductivity. This statement is true for the type and amount 
of data available, i.e. the correlation between these two 
parameters may be reduced by taking additional data. 
Finally, the fracture porosity can be relatively well 
determined despite its low overall sensitivity. This is 
simply due to the fact that fracture porosity is only weakly 
correlated to the other parameters, resulting in an 
independent estimate. 

r̂  -13.5 -13.~ 41 . . .  

. . .  v 
M ,o -14.0 . .. .. . . . . . . . . . .. . ,. . . . . . ,. .. . . ... . . . .. 

. .  . .  

. I  

.- 

. . .  -.-, 

." - -  
Y) 

0 

. .  

I 
1100 . I 

I -.- 

3.01 
60 I 

20 I 
300 - -. 

275 I /  
250 v 

0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

Iteration 

Figure 2 - Optimization path in parameter space (solid 
lines). The true values are indicated as dashdotted lines. 

Figure 2 depicts the solution path in the parameter space, 
Le. the updated parameter set after each Levenberg-Marquardt 
iteration. The two most sensitive parameters (log(k) and 
initial reservoir temperature) quickly converge to the true 
values (dashdotted line), reducing the value of the objective 
function (Eq. 7) by more than two orders of magnitude 
within four iterations. Fracture spacing is increased from its 
initial value of 20m toward the true value of 50m, forcing 
the less sensitive parameters to actually go away from their 
true values according to the correlation rules prevailing at 
that time. They later recover after the main parameters have 
stabilized. However, this fine-tuning only leads to minor 
reductions of the objective function. Fracture zone porosity 
as the least sensitive parameter does not seem to converge to 
the true value. 

m 

The solid lines are the pressures, temperatures, water and 
vapor flow rates simulated using the estimated parameter set 
(Table 2, column 4). For the first 5 years, the deviations 
between the solid lines and the squares minimize Eq. 7. 
Beyond 5 years, the solid lines are predictions, Le. an 
extrapolation of the system response matched during the 
calibration period. The model predictions are uncertain due 
to uncertainties in the estimated parameters. The standard 
deviation of the calculated system response, Le. the 
uncertainty of the predicted temperature in the production 
well at a certain point in time, is the square root of the 
corresponding diagonal element of matrix Cz which is 
calculated using first-order error propagation analysis: 

C ~ = J C , J *  

Here, matrix J is the sensitivity matrix for the predicted 
system response, and C, is the covariance matrix of the 
estimated parameters (Eq. 10). The resulting error bands on 
the model predictions are shown as dashdotted lines in 
Figure 3. They have to be considered optimistic because 
only the six parameters analyzed in this study are considered 
uncertain. All the other parameters as well as the model 
structure are assumed to be exactly known, which of course 
is only true for a synthetic case. However, it is interesting 
to note that the true system response (triangles) lies within 
the estimated error band despite the fact that the parameter 
set used for the prediction does not exactly correspond to the 
true one. 

The high accuracy of the model prediction can only be 
achieved by a combined inversion of all available data. It is 
obvious that the temperature decrease in observation well 
W1 could not have been predicted by relying only on 
temperature data during the calibration phase. In fact, the 
contribution of temperature measurements to the 
determination of the parameter set is minor. This is mainly 
due to the fact that a temperature change of 1 'C leads to a 
vapor pressure change of about 1 bar which can be easier 
detected given the accuracy of pressure measurements. As 
mentioned earlier, temperature and pressure are not 
independent in a singlecomponent two-phase flow system. 

c 
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a 

J 

used for calibration. Triangles represent the true system response. Simulation results based on the estimated parameter set are 
shown as solid lines. Error bands (dash-dotted lines) are calculated using linear error propagation analysis. 
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This is reflected by correlation coefficients close to one, 
calculated from matrix Cz- 

Provided that the expected measurement errors (see Table 1, 
column 3) are reasonable, the bulk of the information about 
the parameters of interest is contained in the accurate vapor 
flow rate measurements and the pressure data in the 
production well. The contribution of a certain observation 
(e.g. flow rate data of a given accuracy taken over the entire 
measurement period) to the solution of the inverse problem 
can be evaluated by adding up all the absolute values of the 
corresponding sensitivity coefficients, weighted by the 
expected measurement error and scaled by the inverse of the 
parameter variation. This qualitative measure is summarized 
in Table 5,  column 2. Comparing total sensitivities of 
individual observations, one can conclude that accurate 
measurements of vapor flow rates and pressures and 
temperatures in the injection and production wells would be 
sufficient to solve the inverse problem, Le., data from the 
observation wells are less sensitive in our example. Note 
that this kind of an analysis can be performed without 
actually taking the data, i.e. it can be used to design and 
optimize monitoring systems. Details of such a procedure 
are described in Finsterle (1995). 

The system response as observed in the injection, production 
and observation wells is shown in Figure 3. The squares are 
the synthetically generated and perturbed data points used to 
calibrate the model. The triangles represent the future 
system response for the true parameter set (see Table 2, 
column 2). 

The standard deviations of the final residual (Table 5,  
column 3) are on the order of the measurement errors, 
indicating that no significant systematic errors are present. 
Finally, the contribution of each observation type to the 
final value of the objective function (Table 5, column 4) is 
evenly distributed among the measurements, confirming the 
choice of the weighting factors in matrix C-l. 

Recall that this study was made using synthetic data with 
known error structure, and that no systematic errors are made 
since the conceptual model is correct. In field applications, 
the proper conceptual model and the structure of the random 
errors are not exactly known. Note, however, that the 
relative weighting of data points can easily be adjusted and is 
partly automated in ITOUGH2 following the suggestions by 
Carrera and Neuman (1986). While the problem of 
systematic errors is not directly addressed by inverse 
modeling, the automation of the calibration step makes it 
possible to examine a number of alternative conceptual 
models. The extensive residual analysis performed by 
ITOUGH2 provides a means to identify aspects of the model 
that need to be refined. Moreover, model identification 
criteria (Camera and Neuman, 1986) are evaluated which help 
select the model that most likely represents field conditions. 
Successful application of ITOUGH2 to a variety of 
laboratory and field data has been demonstrated (Finsterle and 
Pruess, 1994, 1995). 

Table 9 - Total Sensitivity of Observations, Standard 
Deviation of Residuals, and Contribution to Objective 
Function. 
Observation Sensitivity Std. Dev. COF 

Pressure Pro. 1 500 2.0 10.3 
Pressure W1 426 2.2 12.5 
Pressure w2 358 2.1 11.6 

Pressure Inj. ’ 789 1.9 9.7 

w 

Temperature Pro. 680 4.6 8.9 
Temperature W1 1 07 5.4 12.2 
Temperature W2 100 5.2 11.3 
Water flow rate 87 1 .e 10.5 
Vapor flow rate 1735 0.1 13.0 
COF Contribution to Objective Function [%] 

4 .  CONCLUDING REMARKS 

The purpose of this study was to demonstrate the flexibility 
of an inverse modeling approach for automatic history 
matching and the estimation of simulation model parameters 
by performing a joint inversion of all available data. In 
addition to automatic model calibration, the ITOUGH2 code 
provides a number of semi-quantitative measures to study 
parameter sensitivities, correlations between parameters and 
observations, prediction uncertainties, total parameter 
sensitivities, potential benefits from taking measurements of 
a certain kind and in a certain location. This information is 
useful for the design and optimization of reservoir 
delineation and monitoring programs. 

The advantage of inverse modeling procedures is that they 
overcome the time and labor intensive tedium of trial-and- 
error model calibration. Effective, model-related parameters 
are automatically determined on the scale of interest. This 
ensures that the reliability of subsequent predictions can be 
greatly improved if they are based on the same or a similar 
conceptual model of the geothermal reservoir. Matching 
data obtained during exploitation of a geothermal field and 
predicting the future reservoir performance is an excellent 
example of this philosophy. 
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