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• Measurements show wide scatter, indicating sensitivity to 
apparatus details

• Usual modeling strategy: Start from a generic idealization   
(e.g., homogeneous isotropic flow, constant density),           
then add complicating details empirically

• Key obstacle: Even for idealized problems, neither a consensus 
on the governing physics nor a sound mathematical framework 
for analysis has been established

• Our study of idealized front propagation in random flows has 
yielded:
– A novel systematic approach to analysis of the weak turbulence limit
– Numerical verification of predictions of the turbulent burning velocity
– Implications for parameter dependencies in the strong turbulence limit
– A strategy for further analysis of that limit

There is no established theory of the turbulent 
burning velocity in fuel-air mixtures
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Weak turbulence (u′ << SL):
• uT/SL – 1 ~ (u′/SL)

2

– Clavin and Williams (1979)
• uT/SL – 1 ~ (u′/SL)

4/3 predicted for random flow; 
quadratic dependence attributed to periodic flow
– Kerstein and Ashurst (1992)

• Quadratic dependence demonstrated for a random flow
– Akkerman and Bychkov (2003)

Strong turbulence (u′ >> SL):
• uT ~ u′/[log (u′/SL)]

1/2 << u′
– Yakhot (1988); others propose uT/SL ~ (u′/SL)

p for 0<p<1
• uT ~ u′

– Pocheau (1994) and others
• uT ~ u′Re1/4 >> u′

– Upper bound implied by Fedotov (1997)

Studies to date yielded diverse predictions, but 
there has been no reliable way to evaluate them
Studies to date yielded diverse predictions, but 
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Weak-turbulence 4/3 scaling: Derived heuristically, 
supported by simulations of idealized flows
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• For u′ << SL, uT/SL – 1 ~ (δ /ξ)2

(δ is fluctuation amplitude,                   
ξ is correlation length)

• Balance of growth (by advection) 
and decay (by propagation) 
processes determines δ

• Growth: δ ~ δξ (x/ξ)1/2 (random  
walk scaling, where δξ ~ ξ u′ / SL)

• Decay: dδ/dx ~ – δ2

• Balance occurs at downstream 
distance x ~ (u′/SL)-2/3ξ, giving 
uT/SL – 1 ~ (u′/SL)4/3

δ

δ′

x

δ

x

Growth by advection

Decay by propagation

(Kerstein and Ashurst 1992)



For weak turbulence, the problem reduces to a 
formulation amenable to quantum field theory
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• For u′ << SL, propagation + advection 
reduces to propagation for x-dependent SL
(which idealizes heterogeneous propellant 
combustion; Kerstein, 1987)

• A Lagrangian formulation allows exact 
problem reduction, giving
– Immediate extraction of 4/3 scaling
– Prefactor = energy density of Burgers 

flow driven by white-in-time noise

• Previous field-theory analysis of Burgers 
flow enables the derivation of a bound on 
the prefactor, ∆, as a function of the spatial 
autocorrelation of the ‘noise’ SL(x), which 
is the motionless-medium analog of u║(x)

Steps in the analysis New contributions

• Generalized a cusp analysis 
by White (1984)

• Applied a theorem of 
Iturriaga and Khanin (2003)

• Obtained a new explicit solution within 
Blum′s (1994) formal framework

• Found new relationships among 
advection/propagation, polymer 
conformation statistics, and a  
quantum multi-particle system

• Formally established this 
intuitive result



2D simulations demonstrate bound accuracy, 
raising confidence in untested 3D predictions
2D simulations demonstrate bound accuracy, 
raising confidence in untested 3D predictions

Gaussian exponential

∆ ≡ speedup / (u′/SL)4/3 theoretical
bounds

numerics*

u║ autocorrelation:           modified          Gaussian        exponential
Gaussian

new high-precision 
front-propagation
algorithm

*



The results resolve an apparent discrepancy 
and have important implications for u′ >> SL
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• Analysis assumes isotropic random flow
– Certain unphysical forms of anisotropy can change the scaling
– This anomaly explains the quadratic scaling found by Akkerman and Bychkov

• Significant dependence of uT on flow structure is found
– For u′ << SL, both the power spectrum of velocity fluctuations and u′/SL affect uT
– Analysis suggests even greater sensitivity to details for u′ >> SL
– Implication: no expression for uT that depends only on u′/SL can capture all physics

• Because uT must decrease as SL decreases, 
– The derived bound on the normalized speedup ∆ constrains uT scaling for u′ >> SL
– In particular, it rules out uT >> u′ for physically relevant flows

• Renormalization analysis of uT dependencies must be modified



Renormalization, a key tool for u′ >> SL, must 
be reformulated to accommodate 4/3 scaling
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• Renormalization:
– Partition turbulent flow into wavenumber (k) bands
– Represent the effect of the highest-k band as a slight change of SL
– Iterate from large to small k to find the aggregate effect of all bands, giving uT

• This motivates Pocheau’s (1994) ‘scale-invariant’ law uT
α = SL

α+βu′α

• Yakhot’s (1988) renormalization approach predicts
– Quadratic scaling for u′ << SL vs. the demonstrated 4/3 scaling
– uT/SL dependence only on u′/SL vs. the demonstrated dependence on spectrum
– uT << u′ for u′ >> SL vs. intuition that flame can′t lag flow

• Both analyses are problematic in light of 4/3 scaling
– They assume infinitesimal k-bands
– This is a well behaved limit only for quadratic scaling (α = 2 in Pocheau’s law)

• Can renormalization be reformulated using finite k-bands?



Finite-band renormalization is evident in an 
algebraic form of the theoretical bound on ∆
Finite-band renormalization is evident in an 
algebraic form of the theoretical bound on ∆

• The algebraic form of the weak-turbulence bound on ∆ depends on details 
of the normalized power spectrum, D(k), of u║(x)

• In 2D, for Gaussian (and some other) spectra, the following is obtained:

where

• Written this way, the dk integral defines overlapping finite-width bands 
parameterized by z, and the dz/z integral is a scale-invariant aggregation 
of band contributions

• This result is suggestive, but its utility for developing a general 

theory of turbulent combustion is yet to be demonstrated
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