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Laser	
  Welding	
  

304L Stainless Steel (wt%) 

C Cr Cu Mn Mo Ni N P S Si Fe 

0.03 18.09 0.2 1.73 0.16 8.57 0.06 0.024 0.001 0.36 bal. 

ROFIN SINAR Nd:YAG 
•   3-axis stage 

•   Constant speed 
•   Ar shielding gas 

•  CW or PW 
weld envelope 

embedded porosity 

plate 1 plate 2 

[ standing edge weld ] 
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o  At SNL we have multiple micro-computed tomography 
options for experimental chacterization and non-destructive 
evaluation 

o  Options present an ability to accommodate various sample 
sizes and meet various resolution constraints 

o  6 powers (200 – 1200 W) 
o  5 speeds (200 – 2000 mm x min-1) 
o  2 focal lenses (80 mm | 120 mm) 

Kevex PSX 10-65W X-ray Tube 
Varian 2520 Detector 

North Star Imaging, Inc. X50 XViewCT Cabinet System 
YXLON Demountable Microfocus Tube 
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Porosity	
  Trends	
  
80 mm lens 

120 mm lens 



Porosity	
  At	
  First	
  Glance	
  

120 mm series 

1016 mm/min 1524 mm/min 2032 mm/min 
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i n c r e a s i n g   w e l d   s p e e d 

1016 mm/min 1524 mm/min 2032 mm/min 

1200 W 

Madison & Aagesen, Scripta Mat., Vol. 67 (2012) pp. 783-786 



Porosity	
  Distribu(ons	
  

120 mm series 

1016 mm/min 1524 mm/min 2032 mm/min 
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Madison & Aagesen, Scripta Mat., Vol. 67 (2012) pp. 783-786 
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P(n)
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Kammer & Voorhees, Acta Mater.,  

vol. 54, (2006) pp. 1549-1558 



1016 mm/min 1524 mm/min 2032 mm/min 508 mm/min 254 mm/min 

120 mm series 
400 W 

800 W 

1200 W 

600 W 

1000 W 



120 mm series 

1016 mm/min 1524 mm/min 2032 mm/min 508 mm/min 254 mm/min 

1200 W 

1000 W 

400 W 

600 W 

800 W 



120 mm series 

1016 mm/min 1524 mm/min 2032 mm/min 508 mm/min 254 mm/min 

400 W 

800 W 

1200 W 

600 W 

1000 W 



15	
  

Pore	
  Interspacing	
  I	
  
Interfacial Distance Distribution (IDD) 

Measures the fraction of pores lying a specific 
interfacial distance apart by tracking topological 
changes in 3d under expanding or contracting 
isosurfaces 

Chan & Thornton, Acta Mat., Vol. 60 (2012) pp. 2509-2517 

Pore Interspacing Distribution (PID) 

Madison, Aagesen, Chan, Thornton, IMMI, vol. 3 (2014) 
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Pore	
  Interspacing	
  II	
  

SLF =
R

r + R
=

1
2 ( µw (PID) )

µ(r) + 1
2 ( µw (PID) )

Solid Linear Fraction (SLF) 

Provides a linear measure of solid fraction between 
centers of neighboring pores scaled relative to the 
average pore size 

Madison, Aagesen, Chan, Thornton, IMMI, vol. 3 (2014) 
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Now	
  what…….	
  

Weld	
  schedule	
   processing 

Average/Max	
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  Size	
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  Frequency	
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Direc2onality	
  

Pore	
  Interspacing	
  	
  
Solid	
  Linear	
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Image	
  based	
  modeling	
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  microstructure	
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   performance 

Mechanical	
  tes(ng	
   properties 
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  microstructure	
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  finite	
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Image-­‐based	
  modeling	
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Pore	
  Predic(on	
  

i n c r e a s i n g   w e l d   s p e e d 

1016 mm/min 1524 mm/min 2032 mm/min 508 mm/min 

Gamma distribution with a shift rmin = 0.02mm and  
Pore radii = R = rmin + X where X is a gamma random variable 
with shape parameters α, β > 0 estimated from observation 
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Explicit microstructure 

We explicitly embed the 3d microstructure obtained 
via µCT into a F.E.A. environment to examine local 
and global strain behavior and compare this to 
tensile tests of the actual microstructures 

simulation simulation 

simulation 

Mechanical	
  Response	
  I	
  

Madison, Aagesen, Battaile, Rodelas, Payton, MMA, Vol. 2 (2013) pp. 359-363 



20	
  

plate thickness: 0.090 in., 2.29 mm 
un-cracked ligatment: 0.060 in., 1.52 mm 
root offset: 280 microns 
root void diameter: 191 microns 
uniform void diameter: 95.2 microns 
root void spacing: 1D, 191 microns 
common area fraction: 0.049 

Root porosity is uniformly distributed - uniform porosity is randomly distributed. J 

Mechanical	
  Response	
  II	
  
Empirically Informed Ideal Cases 
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notch radius: 68 µm   
nodes: 2,324,437 

elements: 1,698,888 

t = 0.20 s t = 0.40 s t = 0.60 s t = 0.86 s 

Sheet thickness: 1.6 mm 
Ligament length: 508 µm  

Number of voids: 6  
Void diameter: 150 µm 

Area fraction: 0.066 (~target)  
Location: centerline of ligament 

Coarse element size: 24 µm 
Finer element size: 12 µm 

Element type: composite-tet (10 nodes) 

Characteristic measures 
Mechanical	
  Response	
  III	
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•  Average and maximum pore volume increases with decreases speed or increasing power 
  
•  Pore frequency can be reduced by increasing power beyond a speed specific threshold 

•  ISDs and INDs illustrate pore shape and directionality are qualitatively and quantitatively similar for a 
given welding speed despite power delivered 

 
•  ISDs show pore shapes are nearly spherical or ellipsoidal at low and high travel speeds and are far 

more irregular at moderate travel speeds. 

•  INDs show pore orientations become anisotropic at moderate to high travel speeds with large 
concentrations of pore interfacial normals pointing toward and away from the direction of laser 
incidence. 

 
•  Characteristic pore interspacing is nominally equivalent to characteristic pore diameter for welds with a 

broad range of process parameters, as reflected in the solid linear fraction (SLF) values. 
 

•  A predictive model for instantiation of pore quantity, size and their distributions has been developed 
based on experimentally characterized laser welds of 304L SS 

•  Preliminary modeling and experiments both show while smaller collections of pore volumes may 
significantly outnumber larger pores, smaller collections can sustain greater strains and accommodate 
higher stresses, even when spaced similarly as larger pore collections 

Summary	
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