Characterizing Populations,

SAND2014-4915C

Predicting Presence &

Examining Mechanical

. ' Sandia
Exceptional service National

Response Using 3D n the national interest Laboratories
Reconstructions of Porosity
in Laser Welds

1524 mm/min @.1200 W

J. Madison?, C.C. Battaile}, J. Rodelas?, J.
Foulk?, T. Payton3, L.K. Aagesen?, V.W.L.
Chan4, K. Thornton?, M. Grigoriu*

" Sandia National Laboratories — NM
2 Sandia National Laboratories — CA
3 NM Institute of Technology

4 University of Michigan

5 Cornell University

Mean radius

The 2nd International Conference on

SLDNUES

3D Materials Science 2014

e U.S. DEPARTMENT OF
s v

/' YA a7
{0JENERGY WVAS4

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND No. 2014-XXXX.




Acknowledgements ) .

= Sandia National Laboratories, Albuquerque, NM
= Danny O. MacCallum, Org. 1831 — Multiscale Metallurgical S&T
= Joseph A. Romero, Org. 1522 — Experimental NDE & Model Validation
= Burke L. Kernen, Org. 1522 — Experimental NDE & Model Validation
= Ciji Nelson, Org. 1522 — Experimental NDE & Model Validation
= Alice Kilgo, Org. 1822 — Materials Characterization
= James Foulk, lll, Org. 8256 — Mechanics of Materials
= HelenalJin, Org. 1814 — Computational Materials

= Naval Research Laboratory

= Dave Rowenhorst, Multifunctional Materials Division

= Northwestern University

= Voorhees Group — Materials Science & Engineering

= Sandia National Laboratories, Early Career LDRD Award

27 ’ Laboratory Directed Research & Development

Wl (R
\\Qa ¥4 8
<




Outline

- -

= Background
= SNL Interest in Welds & Joinings
= Laser Welding — Process & Challenges

= Characterization Results
= u—Computed Tomography
= Porosity Trends & Distributions

= |nterfacial Measures (ISD, IND)
= Pore Interspacing

= Predictive Probabilistic Model
= Modeling Mechanical Response

= Summary

Sandia
National
Laboratories




SNL | i ini )

1terest in Welds & Joinings

) n ) A > \J. ). Laboratories

‘

« M. Cieslak, A. Ritter, “Precipitate Formation in Austenitic Stainless
Steel Welds,” Scripta Met., Vol. 19, Issue 2, (1985) pp. 165-168

« J. Jellison, M. Cieslak, Laser Materials Processing at Sandia
National Laboratories, presented at Applications of Lasers and

Electro-Optics, Orlando FL, October 1994

* G. Knorovsky, M. Kanouff, P. Fuerschbach, D. Noble, P. Schunk,

2,400 D. MacCallum, F. Hooper, Calculated Versus Experimental Heat
Inputs in Laser Spot Welding, presented at The American Welding
Society, Chicago IL, April 2000
2,000
« C. Robino, A. Hall, J. Brooks, T. Headley, R. Roach,
SAND2002-4014 : Solidification Diagnostics for Joining and
g 1,600 Microstructural Simulations, January 2003
% 1200 * V. Semak, G. Knorovsky, D. MacCallum, R. Roach, “Effect of
S Surface Tension on Melt Pool Dynamics During Laser Pulse
Interaction,” J. Phys. D: Appl. Phys. Vol. 39, (2006) pp. 590-595
800 —S81, schedule A, depth=0.030 in
84, schedule B, depth=0.030 in * Boyce, Reu & Robino, “The Constitutive Behavior of Laser Welds
in 304L Stainless Steel Determined by Digital Image Correlation,”
400 | 82, schedule A, depth=0.050 in Met Trans A, Vol. 37A (2006) pp. 2481-2492
"\_55- schedule B, depth=0.050 in « J. Norris, M. Perricone, R. Roach, K. Faraone & C. Ellison,
0 0 005 o1 015 SAND2007-1051 : Evaluation of Weld Porosity in Laser Beam

Seam Welds: Optimizing Continuous Wave and Square Wave
Modulated Processes, February 2007

Displacement (in)

« J. Madison, L.K. Aagesen, “Quantitative Characterization of
"0.02000n Porosity in Laser Welds of Stainless Steel,” Scripta Mat., Vol. 67,
Issue 9, (2012) pp. 783-786.

« J. Madison, L.K. Aagesen, C. Battaile, J. Rodelas, T. Payton,
“Coupling 3D Quantitative Interrogation of Weld Microstructure
with 3D Models of Mechanical Response,” Metall. Microstr.
Anal., Vol. 2, Issue 6, (2013) 359-363.




Laser Welding ) .
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u-Computed Tomography =N

Kevex PSX 10-65W X-ray Tube
Varian 2520 Detector

o At SNL we have multiple micro-computed tomography
options for experimental chacterization and non-destructive
evaluation

o Options present an ability to accommodate various sample
sizes and meet various resolution constraints

o 6 powers (200 — 1200 W)

— in-1
North Star Imaging, Inc. X50 XViewCT Cabinet System o 5 speeds (200 — 2000 mm x min-)
YXLON Demountable Microfocus Tube o 2 focal lenses (80 mm | 120 mm) 6
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Porosity At First Glance ) B,

1016 mm/min 1524 mm/min 2032 mm/min

& £l '

oee ] [Mdlaw

1016 mm/min 1524 mm/min 2032 mm/min

Madison & Aagesen, Scripta Mat., Vol. 67 (2012) pp. 783-786
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Interfacial Measures )
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Pore Interspacing |
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Interfacial Distance Distribution (IDD)

Chan & Thornton, Acta Mat., Vol. 60 (2012) pp. 2509-2517
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Pore Interspacing Distribution (PID)

Measures the fraction of pores lying a specific
interfacial distance apart by tracking topological
changes in 3d under expanding or contracting
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Pore I!m.ters,paciﬂg I
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Solid Linear Fraction (SLF)

SLF
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Provides a linear measure of solid fraction between
centers of neighboring pores scaled relative to the
average pore size
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Now what....... ) i

Weld schedule I'— processing
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Pore Prediction
Gamma distribution with a shift r

nin = 0-02mm and
Pore radii = R = r,,;, + X where X is a gamma random variable

with shape parameters a, § > 0 estimated from observation
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Mechanical Response |

Explicit microstructure

We explicitly embed the 3d microstructure obtained
via uCT into a F.E.A. environment to examine local
and global strain behavior and compare this to

tensile tests of the actual microstructures
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Mechanical Response Il

Empirically Informed Ideal Cases

root porosity transitional porosity

uniform porosity
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T

un-cracked
ligament

plate
thickness

root
offset

\_/

plate thickness: 0.090 in., 2.29 mm
un-cracked ligatment: 0.060 in., 1.52 mm
root offset: 280 microns
root void diameter: 191 microns
uniform void diameter: 95.2 microns

root void spacing: 1D, 191 microns
common area fraction: 0.049

Root porosity is uniformly distributed - uniform porosity is randomly distributed. © 20




Mechanical Response lll

Characteristic measures
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notch radius: 68 um
nodes: 2,324,437
elements: 1,698,888

PACE)
ALK
SN
SUERAA
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R
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7

Sheet thickness: 1.6 mm

Ligament length: 508 um

Number of voids: 6

Void diameter: 150 um

Area fraction: 0.066 (~target)

Location: centerline of ligament

Coarse element size: 24 um

Finer element size: 12 um

Element type: composite-tet (10 nodes)

t=0.86s
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Average and maximum pore volume increases with decreases speed or increasing power

Pore frequency can be reduced by increasing power beyond a speed specific threshold

ISDs and INDs illustrate pore shape and directionality are qualitatively and quantitatively similar for a
given welding speed despite power delivered

ISDs show pore shapes are nearly spherical or ellipsoidal at low and high travel speeds and are far
more irregular at moderate travel speeds.

INDs show pore orientations become anisotropic at moderate to high travel speeds with large
concentrations of pore interfacial normals pointing toward and away from the direction of laser
incidence.

Characteristic pore interspacing is nominally equivalent to characteristic pore diameter for welds with a
broad range of process parameters, as reflected in the solid linear fraction (SLF) values.

A predictive model for instantiation of pore quantity, size and their distributions has been developed
based on experimentally characterized laser welds of 304L SS

Preliminary modeling and experiments both show while smaller collections of pore volumes may
significantly outnumber larger pores, smaller collections can sustain greater strains and accommodate
higher stresses, even when spaced similarly as larger pore collections
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