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Anisotropic Adaptivity

• Engineering applications generate solutions with different 

scales of variation along different directions or solutions that 

are not smooth.

Uniform refinement (Coudière et al. - 2002):

For the linear interpolation of a discontinuous function on a 

3D-mesh with N nodes, the error satisfies at best

Isotropic refinement (Coudière et al. - 2002):

For an isotropic adaptive mesh method, the error satisfies at 

best

Anisotropic refinement (Conjecture):

For an anisotropic adaptive mesh method, the error satisfies 

at best
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Mesh & Accuracy

Anisotropic meshes allow
• optimal distribution of nodes
• better accuracy than isotropic ones



Anisotropic Mesh Adaptation

Existing techniques:

• Anisotropic mesh generation (Frey, Hecht, Huang, …)
• Anisotropic metric map
• Generate unit mesh in transformed space
• Approximation of solution Hessian

• PDE-Dependent R-Adaptive Schemes
• Node movement to minimize objective function
• Energy functional (Tourigny, Jimack, …)
• Least-squares norm of residuals (Tourigny, Jimack, Roe, …)

• PDE-Independent R-Adaptive Schemes
• Node movement to minimize objective function
• Approximation of solution Hessian



Hessian-based R-Adaptation

• Equidistribute edge length in transformed space
• Require additional geometric criterion (sliver)
• Works of Berzins, Chen, Jimack, Remacle, …

Goal: Minimize the L2-norm of interpolation error

Very few works check the H1 semi-norm of error

• Long and thin elements are good for L2-norm of 
interpolation error (Rippa, Chen) but can be undesirable for 
H1 semi-norm of error (Babuska and Aziz).
• The H1 norm is related to the accuracy of the solution and 
its gradient (Céa’s lemma).



Hessian-based R-Adaptation

• Bank & Smith (1997):
• Linear Triangles
• Error between quadratic function and linear interpolant

• Lague (2006):
• Linear Triangles
• Express error from a Taylor expansion.

Goal: Minimize the H1-norm of interpolation error

• Propose an approach based on interpolation bounds
• Easy extension for 3D
• Works with affine equivalent elements



Interpolation Error Bounds
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Theorem (Formaggia, Huang, …):

• u is the linear interpolant of u.
• Constants C depend only on    .
• The bound for H1 semi-norm contains a barrier term.
• Flexibility for choice of reference element.

• Choose equilateral triangle

ˆ K 



R-Adaptive Scheme

Objective function: det(BK ) BK
1

F

2

BK
T D2u(GK ) BK F

2

K



Minimization Algorithm:
1. Get the Hessian matrices at the nodes
2. Sweep through edges to check for swapping 
3. Interpolate the Hessian matrices in each element
4. Sweep through nodes to optimize position

• Use analytical formula for the Hessian matrices.
• Do only a few sweeps.
• Do only one pass.



R-Adaptive Scheme

• F. Alauzet and P. Frey (2003)
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R-Adaptive Scheme
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8072 triangles



R-Adaptive Scheme
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R-Adaptive Scheme
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R-Adaptive Scheme
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R-Adaptive Scheme

• Example from W. Huang

u(x,y)  tanh(64y) tanh 64 x y
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R-Adaptive Scheme
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R-Adaptive Scheme
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R-Adaptive Scheme
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R-Adaptive Scheme
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R-Adaptive Scheme

• On coarse meshes, the error increased.

How do we know when the mesh is too coarse?



R-Adaptive Scheme

Summary:
• Introduce an RS-adaptive scheme.
• Objective function based on H1 interpolation bounds.
• On fine meshes, the scheme reduces the H1-norm of error.
• On coarse meshes, there is no guarantee.
• Extend to tetrahedra, affine equivalent elements.

Questions:
• How to treat the case of coarse meshes?
• Extension to quadrilateral elements?
• Interpolation formula for Hessian matrix?



R-Adaptive Scheme
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