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Summary: ZAPP experiments measure fundamental (f) i
properties of atoms in plasmas to solve important
astrophysical puzzles.

Fe Opacity

 Why can’t we predict the location of the
convection zone boundary in the Sun?

> Opacity of Fe at ~200 eV - ’

Si Photoionization

* How does ionization and line formation occur A/ AN AP 2
in accreting objects and warm absorbers? | T Y T

» lonization distribution and spectral | f T
properties of photoionized Ne and Si

« Why doesn’t spectral fitting provide the correct
properties for White Dwarfs?

» Stark-broadened H-Balmer line profiles




Experiments on Z access a broad range of the ) e,
energy-density phase space

Laboratories
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Experiments on Z access a broad range of the ) s,
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energy-density phase space
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The Z facility at Sandia National Laboratories is the
most powerful pulsed power machine in the world.
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The z-pinch dynamic hohlraum (ZPDH) produces ()
record currents of 25.8 MA with 1.5% reproducibility

Load Currents (20 shot average) Z-pinch Dynamic Hohlraum
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Standard ZPDH Characteristics
360 W wires — 11.4 um diameter

m = 8.5 mg W total
Viax = 85 kV (20.3 MJ)
I, =25.8+0.4 MA [20 shots]
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Sanford et al., POP 9 (2002)
Lemke et al., POP 12 (2004)
Bailey et al., POP 13 (2006)
Slutz et al., POP 13 (2006)
K Rochau et al., PRL 100 (2008)




The ZPDH x-ray emission is reproducible to + 10% (r) i
iIn peak power and * 7% in energy

Radial X-ray Power and Energy

(20 shot average) Z-pinch Dynamic Hohlraum

220(218 + 22TW &b
i \/'/"\/
- 15 < 40 mm >
200 - |
s i ZR Z
S 150 1.59 + 0.11MJ - >2011 <2007
% [ Marx 203MJ  11.4 MJ
o I Energy
= 100 *
b I Ipeak 258 MA  21.7 MA
(1.5%) (2.1%)
50 Mass 8.5 mg 3.8 mg
Peak 220 TW 120 TW
essprrn I HEEiesscacaln, Power (10%) (14%)
40 20 0 AU U Radiated 1.6 MJ 0.82 MJ
) . Time (ns) Energy (7%) (17%)

*Wagoner, PRSTAB 11 (2008)



The ZPDH can also radiatively heat samples placed (i)
above the z-pinch to T,~200 eV.

Framing Pinhole Camera Images
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The ZPDH simultaneously drives four i) deoa
Independent experiments on a single ZAPP shot

1 Axial Experiment X-ray 3 Radial Experiments Z-pinch
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The x-ray drive on radial samples needs to be i)
corrected for the view-factor

Monochromatic Images (277 eV) Calibrated VISRAD* view-factor model

Assumption:

Each ‘pixel’ emits a Planckian spectrum at its
_ Characteristic T,
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*PRISM Computational Sciences




The calibrated VISRAD model is used to infer the  (fh) s _
radiation drive spectrum at each sample
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ZAPP campaigns simultaneously study multiple ) o

Laboratories

Issues spanning 200x in temperature and 10%x in density

Solar Opacity Photoionized Plasmas White Dwarf Line-Shapes

Question: Question: Question:

Why can’t we predict the How does ionization and Why doesn’t spectral fitting
location of the convection line formation occur in provide the correct properties
zone boundary in the Sun? accreting objects? for White Dwarfs?

Achieved Conditions: Achieved Conditions: Acheived Conditions:

T, ~200eV, n,~ 102 cm3 T.,~20eV,n,~ 108 cm3 T.~1eV,n,~ 107 cm3
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ZAPP campaigns simultaneously study multiple Ah) e

Laboratories

Issues spanning 200x in temperature and 10%x in density

Solar Opacity

Question: Question: Question:

Why can’t we predict the How does ionization and Why doesn’t spectral fitting
location of the convection line formation occur in provide the correct properties
zone boundary in the Sun? accreting objects? for White Dwarfs?

Achieved Conditions: Achieved Conditions: Acheived Conditions:

T, ~200eV, n,~ 102 cm3 T.~20eV, n, ~10*® cm3 T.~1leV,n,~ 10 cm3
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Models for solar interior structure disagree with ) e,
. . . Laboratories
helioseismology observations.

Convection-Zone (CZ) Boundary
Models are off by 10-30 o

Models depend on:
« Composition (revised in 2005%)

« EOS as a function of radius
* The solar matter opacity

 Nuclear cross sections
.

Question: Is opacity uncertainty the cause of the disagreement?

Objective: Measure Fe opacity at CZ base conditions. »

*M. Asplund et al, Annu. Rev. Astro. Astrophys. 43, 481 (2005).



The ZPDH radiating shock is used to both heat and (g e,
backlight samples to stellar interior conditions.

Foil is heated during 1.0

the ZPDH implosion 50.8
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The achieved temperature and density depend on (g )
the target design.

Thin Tamper | Thick Tamper
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Modern computations of Fe opacity show large i)
disagreements with data at CZ base conditions

Thin Tamper* (156 eV, 6.9x10%! cm 3)

Present Status

» Agreement between data and
computation becomes worse at
Increasing temp. and dens.

- Z-data

c o ) ]
% ol PrismSpect -+ Disagreements at CZ base
E T conditions can partially explain
g Thick Tamper (182 eV 31x1021 cm 3) the CZ boundary problem.
|_ —T—T
10 -
- -4+ The differences are probably
s ‘ j not unique to Fe... more
0.5 E | scrutiny of the data is prudent.
- Z-data ' >
- ‘r
- PrismSpect ; . ‘
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*Bailey et al., PRL 100 (2008)



ZAPP campaigns simultaneously study multiple Ah) e

Laboratories

Issues spanning 200x in temperature and 10%x in density

Photoionized Plasmas

Question: Question: Question:

Why can’t we predict the How does ionization and Why doesn’t spectral fitting
location of the convection line formation occur in provide the correct properties
zone boundary in the Sun? accreting objects? for White Dwarfs?

Achieved Conditions: Achieved Conditions: Acheived Conditions:

T, ~200eV, n,~ 102 cm3 T.,~20eV,n,~ 108 cm3 T.~1eV,n,~ 10 cm3
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We learn about black holes from the matter falling  (fh) o
Into them — these are photoionized plasmas

Conceptual Picture of a Black-Hole Accretion Disk Photoionization parameter
&~10- 10,000 erg.cm.s A7 F
£ =

[erg.cm.s ]
ne

Laboratory Plasmas
n, ~ 10 cm=

F>1TW/cm? for & > 10

« Can we model the ionization?

« Can we model the line emission?




We learn about black holes from the matter falling () o _
Into them — these are photoionized plasmas

Conceptual Picture of a Black-Hole Accretion Disk Photoionization parameter
&~10- 10,000 erg.cm.s A F ,

= erg.cm.s
Compton scatter to observer £ Ne [ g ]

L\ T L corona — no bound states . | aboratory Plasmas

o e T R B ST TR R M R B BB BT ne~1olgcm-3

Fe K layer F>1TW/cm? for & > 10

LY Blanckian Fe L layer (8 charge states]  «  Cgn we model the ionization?

Can we model the line emission?




A Specific Problem: Emission from L-shell ions is i)
not seen in some prominent black-hole accretion disks.

Measured Fe Emission Resonant Auger Destruction (RAD)
from MCG 6-30-15 was accepted as the reason*
[ = XWibt-Nowton « 2 competing processes for the
137 de-excitation of L-shell ions:
12} Radiative Auger
g | ___Decay ___Decay
. 11} 2p 2p —e
b 1s 1s
1_0 L Ka
. ] « Thin Plasma: high probability of
ool v v v v v observing the photon
3 4 5 6 7 8
Observed energy (keV) « Thick Plasma: high probability of the
photon being resonantly absorbed
No observed emission from > Higher probability of Auger Decay
Fe ionized to the L-shell a7 e ChsEh s y
) .

*Ross, Fabian and Brandt, MNRAS, 1996



New models* suggest that RAD may not be as ) e,
- . . Laboratories
efficient as previously thought.
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Question: Is Resonant Auger Destruction the reason we don’t see emission
from L-shell ions in some black-hole accretion disks?

Objective: Measure spectrain a highly photo-ionized lab plasma.

*Liedahl, X-ray Diag. of Astrophysical Plasmas (2005)



ZAPP experiments achieve g ~ 20 at the correct ) i,
column depths to study the RAD question. oo

Si Absorption Measurements
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Recent emission measurements demonstrate that (@) i,
. . . Laboratories
L-shell emission is not 100% quenched by RAD.

Present Status

« Z Data demonstrates that L-
shell emission does escape at
column depths >1E17 at/cm?.

* Present data can discriminate
between models of the
ionization distribution AND

Wavelength (Ang.)

N = m;” relative line strengths.
nphot = 9.60E13 1
Ix10"F 3 . . c
New Model - Absolute intensity is needed to
: determine efficiency of RAD

process.




ZAPP campaigns simultaneously study multiple Ah) e

Laboratories

Issues spanning 200x in temperature and 10%x in density

White Dwarf Line-Shapes

Question: Question: Question:

Why can’t we predict the How does ionization and Why doesn’t spectral fitting
location of the convection line formation occur in provide the correct properties
zone boundary in the Sun? accreting objects? for White Dwarfs?

Achieved Conditions: Achieved Conditions: Acheived Conditions:

T, ~ 200 eV, n, ~ 102 cm-3 T.~20eV,n,~10*® cm3 T.~1eV,n,~ 107 cm3
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The properties of White Dwarfs are determined by () sim
spectral fitting, but disagrees with other methods

Spectral fit of WD J1916+3938*

* White Dwarfs are fundamentally

. 1.4X10'lulll|||||||||||\
important
» Evolutionary endpoint for ~98% of stars 1 2x10-16 i
» Simple in structure and evolution =
. . N
» Cosmic laboratories (cosmochronology) N .
: [
~
o gx10-16 |t =
« WD surface temperature and total £ -
mass are usually determined by fitting o !
the observed spectra 2 '
) 4x10718 - |
» The spectroscopic method and _
gravitational redshift disagree by X0 T e e ze00 1800
>10% in the stellar mass | Wavelength (A)

28

*Hermes et al. (2011)




New Stark broadened line-shape calculations* i)
partially fix the problem — are they right?

T, =10,000 K Tremblay & Bergeron
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Question: Are inaccurate H-Balmer line shapes responsible for the inaccurate
determination of WD mass?

Objective: Measure H-Balmer line shapes at relevant temperature and density.

*P. Tremblay and P. Bergeron, ApJ (2009)




ZAPP experiments utilize radiatively heated gas ) e
cells to provide benchmark data for the WD problem

Gas Cell Model

» Gas cells provide a precisely
known atom density

& Spectrometer
Fiber

*Large cell size provides optical
depths needed for high-n lines

*Large cell minimizes the effect of
boundary layers

*Long fielding distance provides
uniform heating flux
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Simultaneous streaked absorption and emission i) febor
In absolute units provide a unique capability
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Measured H-Balmer
between theories

line shapes can discriminate (g i
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Laboratories

Present Status

« Measurement of relative line-
shapes up to n=7 provides a
strong constraint on models

« Additional measurements at
higher density may be required to
fully address the WD problem

» Continued scrutiny on the data is
prudent:
» Reproducibility of the result
» Plasma uniformity

.‘\
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ZAPP experiments inform and challenge the i)
interpretation of spectral data from the world’s
multi-billion dollar x-ray observatories.

Chandra
$2.8B

SEE Wl NATURE Editorial: November, 2013
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XMM-Newton
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Nailing fingerprints in the stars

Laboratory-based experiments are sorely needed to complement the rapidly proliferating spectral
data originating from observations by the latest space telescopes.

hat are stars made of? After astronomers detected a bright-
yellow, unknown spectral line in sunlight in 1868, they
named the new element helium after the Greek Sun god

Helios. But it was some 30 years before physicists on Earth managed
to detect — and so confirm the discovery of — helium in alaboratory.

Itis a pattern that has been repeated many times since: the indirect
detection o ments and molec hrough spectral signa in

Suzaku
$0.5B

ier elements have many electrons that
iron has 26, making the probabilities
cu-

eastire
lh f db ckl lh stro-
ni mp

“Laboratory-based experiments are sorely needed to complement the rapidly
proliferating spectral data originating from the latest space telescopes”

*Nature editor, Nature 503 (2013)
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