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1. Impact of Mesh Quality on Solution Accuracy & 
Efficiency

Applications that use meshes want accuracy & efficiency.

Many factors go into accuracy & efficiency such as the governing 
equations, the solution, the method of discretization, linear 
solvers & preconditioners, and the quality of the mesh.



A Definition of Mesh Quality:

“The characteristics of a mesh that permit a 
numerical PDE simulation to be performed with 
fidelity to the underlying physics, accuracy, and 
efficiency.”

Fidelity: Preservation of Equation Type, 
and Solution Symmetry

Accuracy: ‘Small’ Discretization Error

Efficiency: Mesh results in reasonable matrix 
conditioning and ‘small’ maximum eigenvalues.

The quality of a mesh depends on the discretization 
scheme, the solver, the PDE, and the physical 
solution.



1.1 Finite Differences

A body of literature exists on the relationship between 
truncation error and the quality of structured meshes (Mastin 
& others).

Mastin, C.W. (1982)  “Error induced by coordinate systems,”  in J.F. 
Thompson (editor), Numerical Grid Generation, North-Holland, New York, 
p31-40.

Thompson, J.F., Mastin, C.W. (1983)  “Order of difference expressions in 
curvilinear coordinate systems,”  in Ghia and Ghia (editors), Advances in Grid 
Generation, ASME, New York, p17-28.

Lee, D., Tsuei, Y. (1992) “A Formula for Estimation of Truncation Errors of 
Convection Terms in a Curvilinear Coordinate System,” J. Comp. Phys., 98, 
p90-100.

Huang, H., Prosperetti, A. (1994)  “Effect of Grid Orthogonality on the 
solution accuracy of the two-dimensional convection diffusion equation,”  
Num. Heat Transfer, Part B, 26:1-20.



The Jacobian Matrix (Structured Grids)

Mapping from square or cube to physical 
domain

Jacobian Matrix

Jacobian Determinant (measure of local 
volume)
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Fidelity:  Preservation of Type (structured)

Elliptic (diffusion), Parabolic, Hyperbolic (waves) type 
determined by discriminant of PDE coefficients.

Example:

Laplacian transformed to general coordinates.  

Laplacian elliptic requires J>0.

Meshes with locally negative volumes will cause 
the PDE to change type over the region, resulting in 
non-physical calculations.
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Mesh Quality affects Accuracy

Local Error Analysis:   Dominant error term is 

where h is the representative size of a element and C 
is a constant independent of h.

For structured meshes, 

C contains derivatives of the solution and derivatives 
of the grid.

Example:  For centered finite-differences in 1D, the 
error in            is 

The third derivative of the mapping is related to 
geometric mesh properties.
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Accuracy:  Element Size

Local Error Analysis:   Dominant error term is 

where h is the representative size of a element and C 
is a constant independent of h.

Element size is thus critical in reducing the truncation 
error.  (h-refinement exploits this. )

C contains derivatives of the solution. 

Therefore, one can have h large in parts of the mesh 
where the solution lacks structure because C will be 
small.   Generally want smallest h where solution 
gradient or curvature is largest.   
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Accuracy: Smoothness, Skew, Orientation

Truncation error can also be decreased by 
reducing C.

Because C contains derivatives of the grid, C 
depends on combinations of grid smoothness, 
skew, orientation.

The dependency of C on the grid properties is 
complicated. 

Questions or Comments?



1.2 Finite Elements

A highly developed but incomplete theory exists that 
presents bounds on interpolation error that necessarily 
include mesh quality.

There are also results for efficiency.



1.2.1 Accuracy

Accuracy is addressed through bounds on 
Interpolation Error

Traditional emphasis in FEM is on the asymptotic 
behavior of the bounds, but one can also study them 
from the perspective of mesh quality.

We present some selected bounds and show how they 
depend on mesh quality. 



Conforming affine-equivalent finite elements

Two elements K and K’ are affine equivalent if there 
exists an invertible affine mapping 

such that K=F(K’).

B is a d x d matrix that is constant over the element 
and describes mesh quality in terms of shape, size, 
and orientation.

  bxBxFRxF KK
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Definition of Interpolation Error

Let v be a function belonging to 

Norm:  

Then the local interpolation error is

where π (Pi) is the interpolation operator.
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General Approch due to Ciarlet

For affine-equivalent elements, Ciarlet derives the following 
bound on the interpolation error:

The bound entails a combination of the norm of v and mesh 
quality expressed in terms of the matrix B.  For example, if 
q=p and r=m, the bound is expressed in terms of the 
element Condition Number.
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Tight error bounds on Simplices (Shewchuk)

Let v be a continuous scalar function with a bounded 
second deriviative:

Where r is the circumradius and ρ is the inradius.   
These bounds hold even in the non-assymptotic case!

The bounds show that the gradient error can be 
arbitrarily large as the element becomes badly shaped, 
whereas this is not the case for the solution error.
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Solution-dependent Bounds

Additional bounds can be derived based on special 
knowledge of the solution. 

Examples:

1. If v is a quadratic function, then 
- Nadler bounds the L2 norm of the interpolation error in 
terms of the length of the sides of a triangle
- D’Azevedo & Simpson derive the exact formula for the 
max-norm of the interpolation error,

2.  If v is a smooth function in H2(K), then Formaggia & 
Perotto bound the function and gradient norms in terms 
of the singular values of B and the Hessian of v.



Bounds Based on PDE-Coefficients

If the PDE operator is given in terms of a symmetric  
positive definite matrix A, then the Ciarlet bounds can 
be extended.  

For example,

Thus, if A is anisotropic, then the mesh should account 
for this in order to maintain accuracy.
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Non-affine Elements

If the affine element map Bx+b is replaced by a sufficiently 
smooth 1-1 mapping F with sufficiently smooth inverse, then the 
Ciarlet theory is much more complex.

For example, the interpolation error on the function is bounded 
by a sum of 3 terms involving the supremum over the element 
of the norms of the first, second, and third derivatives of the 
map.  These, in turn, depend on ‘mesh quality’, but cannot be 
expressed in terms of simple, well-known quality metrics.

If the map F is iso-parametric, then the following bound can be 
derived provided F is ‘close’ to the affine map involving B-tilde:
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Convex Quadrilaterals

Jamet & Acosta:

where C is independent of the element geometry. 

Ciarlet & Raviart give a similar bound on the 
Norm of the gradient:

But now C depends on bounds to the radius ratio and 
the element angle.
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Additional Observations on Accuracy:

• Accuracy is decreased if there is a discontinuity in 

the solution which resides in the interior of the 
element, as opposed to being located at a node 
(Carey),
•The optimal grid for best accuracy will be different 
depending on the choice of norm (Carey)
•The results of Shewchuk, Jamet, and others show 
that for the interpolation error in the function, mesh 
quality is equivalent to controlling only h, whereas for 
the error in the gradient, mesh quality involves not 
only h, but also element condition number (shape).

Questions or Comments?



1.2.2 Efficiency in Finite Elements

Recall rate of convergence of iterative linear system 
solver is determined by the largest eigenvalue of the 
stiffness matrix (steady-state).



Largest Eigenvalue

For a membrane discretized by triangular elements with 
piecewise linear finite elements, Fried proved:

where λ-max is the largest eigenvalue of the stiffness 
matrix, θ-min is the smallest angle in the triangle, and p-
max is the largest valence in the mesh.

Hence, small or large angles create large maximum 
eigenvalues and thus decrease the rate of convergence.
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Additional Comments on Efficiency

•There also exist bounds on the condition number of the 
mass & stiffness matrices which depend on mesh 
properties; a poor mesh could thus adversely impact 
roundoff errors,
•Du et. al. presented numerical experiments which showed 
that large angles could hamper solver efficiency when 
preconditioned with AMG,
•Batdorf showed that convergence rate of GMRES and 
multigrid solvers is adversely affected by large angles; 
smoothing & swaping of meshes can allow a convergent 
solution to be obtained.



1.2.3 The Discrete Maximum Principle 

For a linear finite element approximation of a quasi-
linear elliptic operator, the condition that all mesh 
angles be acute is sufficient to guarantee that the 
discrete maximum principle holds (Ciarlet & Raviart).

For diffusion operators, a sufficient condition for 
triangle meshes is:

where these are the opposite angles of any two 
triangles sharing an edge (Xu & Zikatanov); this 
condition allows the mesh to have obtuse angles and 
still obey the discrete maximum principle. 

A result for tetrahedral meshes involving edge lengths 
and dihedral angles is also given by Xu.

    0cotcot 21  



1.2.4 Summary of Impact of Mesh Quality

•Accuracy depends on mesh quality, along with other 
factors,
•Truncation Error depends on derivatives of the map 
from which a structured mesh is generated,
•Error bounds depend on mesh properties,
•The mesh properties which appear in the expressions 
for the error often do not correspond to any traditional 
mesh quality metrics,
•Condition number (angles and aspect ratios) does 
appear in FEM error bounds, while angles are 
important in efficiency,
•Gaps remain in the theory and its appliication to 
mesh quality (non-simplicial elements, high-order 
elements) 
•We did not discuss finite volume case, nor the case of 
impact of mesh on `a posteriori error estimates

Questions or Comments?



2. Measuring Initial Mesh Quality

Mesh Quality is also of interest in the generation of initial 
meshes that may later be adapted to the solution.

Many measures, metrics, and functions exist which measure
geometric mesh quality.  Widely used in industry.



2.1 Measuring/Assessing Mesh Quality

-Visual Inspection of the Mesh (not practical in 3D unless 

one is using advanced visualization techniques), 

-Mesh or Element Quality Metrics (automatic)

Definition: Element Quality Metric

“A scalar function of element nodal positions that 
measures some geometric or other property of an 
element.”

Quality Metrics measure local quality.  

Global mesh quality can be measured in terms of 
norms or p-means of local quality metrics. 



Uses of Mesh Quality Metrics

1. Mesh Quality Requirement Specifications,
2. Defect detection (catch problems early),
3.  Quality Control (good meshes are hard to make),
4.  Mesh Improvement:

Edge swapping, Element swapping
Node-movement Strategies

h-adaptivity works best when starting with good initial mesh 
quality (quality can degrade in some local refinement 
schemes.)



Threshold Criteria for Automatic Quality Control

Metrics are compared to quantitative threshold criterion.

Example: Let M be the value of some diagnostic metric, with range 
min M<M<max M over all possible element sizes & shapes.   This 
interval can be subdivided as follows: 

T1                   T2                T3
Min M                                                                           Max M

Reject         Red Zone      Adequate       Good

Reject - Must fix problem elements (automatically report an error),
Red Zone - Investigate problem elements (automatically report a 
warning)
Adequate - Use-able elements (do not report)
Good - Elements close to Ideal (do not report)

T1 & T2 are critical to determine and yet no theory exists on how 
they should be determined. 

Questions or Comments?



Properties of Quality Metrics

Dimension

Definition

A metric is dimension-free if its definition in 
3D is an unambiguous natural generalization 
of its definition in 2D.

Example: Volume metrics are dimension-
free, while angle metrics are dimension-
specific. 



Properties of Quality Metrics

Element type

Definition

A metric is element-free if its definition on 
one element type is an unambiguous natural 
generalization of its definition on another 
element type.

Example: Maximum angle is element-free on 
two-dimensional elements.   The ratio of 
diagonals is element-specific.



Properties of Quality Metrics

Element Shape

Definitions

A metric defined for a fixed element type is shape-
specific if it is meaningful for only a particular shape 
of the element type.

Example: Aspect ratio is shape-specific.   It may be 
defined for any quadrilateral (Robinson, 1987), but 
loses its meaning as one departs from a rectangle.

A metric defined for a fixed element type is shape-
general if it is meaningful over a wide range of 
possible shapes of the element.

Example: Angles of a Quadrilateral is shape-general



Properties of Quality Metrics

Versatility

Definitions

A metric defined for a fixed element type is versatile
if it is sensitive to more than one quality attribute 
(e.g., skew, aspect ratio, shape, size, orientation)

A metric is specialized if it is sensitive to only one 
quality attribute.

Example:  Tetrahedral shape measures are versatile 
because they are sensitive to both angle and length 
ratios, while rectangle aspect ratio is specialized.

Versatile metrics reduce the number of metrics 
needed but provide less detailed information.



Properties of Quality Metrics

Scale & Orientation

Definitions 

A metric is scale-invariant if it’s value does not 
depend on the size of the element.

A metric is orientation-invariant if it’s value does not 
depend on the orientation of the element.

Example: Aspect Ratio of a Rectangle is scale-
invariant & orientation-invariant.   Volume is 
orientation-invariant, but not scale-invariant.



Properties of Quality Metrics

Reference Element

Definition:

A metric is referenced if it incorporates a comparison 
to a reference element to account for inhomogeneity 
or anisotropy.

Examples: Referenced aspect ratio, h / (s w), is 
referenced to a rectangle with aspect ratio s.    The 
aspect ratio h/w is implicitly referenced to a unit 
square.   Area ( h w ) is not referenced.

By necessity, referenced metrics are unit-less.

Questions or Comments?



Examples of Metrics:

Robinson Quadrilateral Metrics

J.Robinson (1987)  “CRE Method of element testing 
and the Jacobian shape parameters,”  Eng. Comput., 
Vol. 4.

Aspect Ratio:  

Skew:  
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Examples of Metrics:

Tetrahedral Shape Measures

Radius Ratio:  

Mean Ratio:

‘Aspect Ratio’

Shape measures are nearly zero for ‘sliver’ 
tetrahedra.
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Equivalence of Shape Measures

Shape measures with values            and              are 
equivalent if there exist positive constants a,c, p,q 
such that

for all shapes of the element (Liu & Joe, 1994).

Example: Radius Ratio, Mean Ratio, & Sine of Solid 
Angle are equivalent.

Equivalent metrics sense the same distortions, grow 
large together, and grow small together.

Need a good reason to use both of two metrics if they 
are equivalent.

1 2
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Status of Widely-Used Mesh Quality Metrics

Redundant: Large number of metrics have been proposed, 
(e.g., half dozen shape metrics), only a few needed.

Ineffective: Some fail to detect certain bad elements, some 
measure things that have no clear connection to the physics.

Not-General: Tied to particular dimension, element-type, or 
element shape.

Implicitly-referenced: Assume isotropic physics.

Absence of Defined Ranges, Ideals, and Meaningful 
Threshholds.

Lack of correlation between geometric properties and analysis 
effects.

Questions or Comments?



2.2 Advanced Topics

Many of the metrics currently in use suffer from one 

defect or another. A mathematical analysis of 

quality metrics sheds light on the issues and suggests 
more advanced metrics which have better properties. 



Shape Measures

Definition: “A tetrahedral shape measure is a continuous 
scalar function of the nodal coordinates that is 
translation, scale & orientation independent, which 
ranges from 0 to 1, with 0 signifying a degenerate 
tetrahedron and attaining 1 only for the unit equilateral 
tetrahedron. “

J. Dompierre, et.al., “Proposal of Benchmarks for 3D 
Unstructured Tetrahedral Mesh Optimization,” p459-478, 7th 
Intl. Meshing Roundtable, Dearborn MI, 1998

This is an abstract definition:

- does not specify a particular form of the metric,

- isolates essential properties of shape metrics,

- relatively non-controversial



Algebraic (Matrix-based) Mesh Quality Metrics

- Incorporates shape definition into Algebraic matrix-based framework,

- Provides abstract definitions of other important mesh quality metrics, 

- Introduces the idea of Target Matrices for Referenced Metrics.

P.Knupp, "Algebraic Mesh Quality Metrics," SIAM J. Sci. Comput., Vol. 23, No. 
1, pp193-218, 2001. 

P. Knupp, “Algebraic Mesh Quality Metrics for Unstructured Initial Meshes,” 
Finite Elements in Design & Analysis, p 217-241, Vol. 39, No. 3, 2003



Referenced Metrics

All metrics should be explicitly referenced to an ideal element.

W

A

Logical                     Reference                          Physical

1 WAT

If f(X) is maximized by X=I, then f(T) is maximized by A=W.



Determination of the Reference Matrix

How is W determined? Ideally, W is determined from either 
à priori or à posteriori knowledge of the solution.

Examples:

-element SHAPE may  be isotropic or an-isotropic depending 
on material properties or boundary layers,

- element ORIENTATION may be determined from flow-lines or 
internal interfaces,

- element relative SIZE may be determined from solution 
gradients.

W may also take into account certain features of the geometry 
such as regions of high curvature (determinant of W small 
where curvature is high).



Algebraic Shape Metric

Definition.  Let  be an algebraic mesh quality metric.  
Then  is an algebraic Shape metric if

• the domain of  is restricted to T, 

•  is scale and orientation invariant, (RS)=(S)

• 0<= (T)<=1, for all T,

• (T)=1 if and only if TSR(n), i.e., A=RW,

• (T)=0 if and only if T is degenerate

(T is degenerate if det(T)=0, but |T|>0.)



Condition Number Shape Metric

is an algebraic shape metric, where

is the element condition number.

Measures distance to set of singular matrices, i.e., 
degenerate elements.  

There are other algebraic metrics which are shape 
measures (e.g., mean ratio & dimensionless-Winslow), 
i.e., they are equivalent.
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Non-Simplicial Elements

A0

A1

A2
A3

Element geometry cannot be represented by a single matrix.
Use multiple matrices to define algebraic metrics.

Questions or Comments?



3. Improving Mesh Quality

If a mesh defect is detected, how can one 
remove it?



What to do when the Quality is Insufficient?

Remesh:
A. Change geometry decomposition
B. Re-block
C. Size settings, intervals
D. Change meshing scheme

The above can be time-consuming (non-automatic).

Post-Process:
E. Reconnect (flipping & swapping)
F. Node-Movement: Smoothing
G. Node-Movement: Optimization

Adapt:
H. h-Refinement
I. r-Refinement
J.   hr-Refinement



Local Reconnection Procedures

Edge Swapping (triangles)

Element Swapping (tetrahedra)

Element Swapping (hexahedra)



Node-Movement:  Smoothing

Definition:

“Smoothing is a procedure for improving mesh quality 
via a node-movement strategy in which a non-linear 
system of equations is solved.”

Smoothing Equation:

Iterative Form:   
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Node-Movement:  Mesh Quality Optimization

Definition:

“Mesh quality optimization is the process of changing nodal 
positions to find the extremae of some scalar objective function 
that measures one or more aspects of mesh quality.”

Two parts:
1)  Choosing an objective function (what)
2)  Choosing an optimization procedure (how)

Connection between Optimization & Smoothing:  extremae of 
the objective function occur where the gradient is zero.   Setting
the gradient of the objective function to zero yields a non-linear
set of equations that result in a smoothing scheme.



Advantages of Optimization vs.Smoothing

Case Study:  Laplace Smoothing as an Optimization Problem

Minimize:

Gradient of this objective function gives the Laplace smoothing equation.

Geometrically,            is the sum of the edge-lengths squared.

Not a shape metric!  (not scale-invariant)

Not a volume metric! (not zero for degenerate elements)

Thus, optimization approach reveals why Laplace smoothing 

is not always effective (does not directly control shape, size, or orientation).

To be meaningful & effective, objective functions should be built from mesh 
quality metrics.

Questions or Comments?
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Local Metrics from an Optimization Viewpoint

Local metrics measure the local relationship between A and W.

Let ‘d’ be dimension (2 or 3) and B in M_d (R), the set of real ‘d x d’ matrices.

Local metrics                  are continuous functions from M_d (or some subset)
to the real numbers.  Examples are |T|, det(T), and trace(T).

For mesh optimization, it is assumed additionally that μ is bounded below
since we are going to minimize our objective functions.  Thus det(T)^2 or 
Trace(T)^2 would be used instead of det(T) or trace(T).

In general, our local metrics will have one of two forms:

Either way, these quantities ultimately are a function of mesh vertex positions. 
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Barrier Metrics

A formal definition of a (weak or strong) barrier metric is given in the 
paper.

Example:   Inverse Mean Ratio (d=2).   

Defined on the set of matrices with positive determinants. 
μ undefined for det(T) ≤ 0. 

μ  ∞ as det(T)0 , except when T = sI (with s 0), so mean ratio 
has a weak barrier at det(T)=0. A metric with no exceptions would have 
a strong barrier.

In general, a barrier metric cannot be used if the initial mesh is inverted.
In that case, one must use non-barrier metrics. 

If the initial mesh is non-inverted, optimization with a barrier metric should
result in a non-inverted optimal mesh. 
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Specific Local Metrics for 2D Meshes

Some existing metrics, such as condition number, already use target 
matrices and thus fit within the TMP.   

Additional metrics are needed to enforce particular relationships 
between the Active and Target metrics.  

Metrics based on 2x2 matrices will be different than metrics based on 
3x3 matrices.   We concentrate on the former here.

We consider both non-barrier and barrier forms of the new metrics.



Ideal Properties of Local Metrics

1. Metrics are continuous functions of T on D, and except for a few isolated
points, they are differentiable with respect to T on D.

2. If a metric has no barrier, D is all 2x2 matrices.  If the metric has a barrier 
the domain is all 2x2 matrices with positive determinant.

3. Metrics are bounded below by a non-negative constant, but unbounded 
above.

4. There exists a finite global minimizer at which the lower bound is attained.

5. The global minimizer belongs to one of the four canonical matrix sets.

6.  If the metric has more than one global minimizer, they all belong to the 
same canonical set.

7. The set of stationary points of the metric coincides with the set of 
global minimizers.  (No local minima or saddle points).



Canonical Relationships Between Active & Target Matrices

If                                            then    A = W                             Shape, Size, Orient

If                                            then    A = s W,    with s > 0      Shape, Orient

If                                            then    A = R W,   R a rotation   Shape, Size

If                                            then    A = s R W.                      Shape

Why do this?    If only want to measure Shape & Size, for example, then one 
does not need the target construction algorithm to consider orientation.
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Three Non-barrier Metrics

Global minimizer and stationary point is T=0, not canonical

(Must fix boundary vertices;  then can be ok.  Laplace.)

Global minimizer is T=I, the Identity set.    Both d = 2 & 3
derivative is 2(T-I), so stationary point is T=I. (coincide)
Equivalent to |A-W| metric used in alignment papers.
Target controls shape, size, and orientation of A. Used in 
TMP deforming mesh method.

Global minimizer is T=sI, the scaled-identity set.
Coincident stationary points.   New.
Target controls shape & orientation of A.  
Size invariant.  Both d = 2 & 3.    
The key in this metric is to indirectly specify s
in terms of T.
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The Size-Shape Non-Barrier Metric (o+)

0<s<1  is a trade-off parameter between orthogonality (first term)
and unit determinant (second term).   Global minimizer is 
T=R, as desired.

But, the metric has stationary points at T=R and at T=0, so not all are 
coincident with the global minimizers (T=R).    
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The Size-Shape Non-Barrier Metric (o+)

Global minimizers & stationary points coincide 
and belong to the set of Rotations.  New!

R is a function of T, so no particular R need be specified.

Only good for d=2.    Target controls Shape & Size, but not Orientation.

Non-barrier Shape Metric (so+)
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Bibliography on Mesh Quality

http://www.cs.sandia.gov/optimization/knupp/Bibliography.htm

Questions or Comments?


