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Motivation

* Neutron irradiation damages electronic devices

* One of Sandia’s missions is to qualify electronic
devices for various radiation environments
including neutrons

* Testing in the past: Fast Burst Reactors (FBRs)
such as Sandia’s SPR-lII

* We are searching for alternative ways to compare
effects of different radiation conditions
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Basics of a BJT and effect of neutron irradiation

Constant emitter current
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Metrics for damage equivalence:
Late time gain

Damage factor is proportional to
NIEL independent what particle
creates the damage

For moderate damage after
infinite long time
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Metrics for damage equivalency:
Annealing factor

The 1nitial damage anneals out with time, the transient gain
recovery 1s an important metric, it describes the time
evolution of the defects.

1 1
7
AF(1)= G(t) ? 5 \
Goo GO
For a case where the Messenger-Spratt

equation 1s valid the annealing factor 1s " -y
fluence independent

Annealing Factor
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Metrics for damage equivalency:
DLTS, number of defects

* DLTS measures the
number of defects and
their energy in the
bandgap

* It can identify defects

It is slow, cannot
measure the transient

DLTS SIGNAL (arb. units)
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i lons create displacement damage
like neutrons

Gain degradation in BJTs 1s due to displacement damage
created by silicon atoms knocked out by neutrons 1in the
base-emitter junction.

Depth vs. Y-Axis

iy

Instead of a neutron generating a
cascade we can use directly Si
ions.
*Easily can be changed on a wide
scale:

Jon fluence

*Pulse length
*No radiation safety concerns
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lon beam experiments
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200ns to seconds

Deflection

2R, Ve
High intensity beams of high Vs Re
energy ions are focused into a
micro-region on a sample to
simulate neutron displacement VkB
damage conditions. M
Rp

Quadrupole
Lens
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Critical Region:
Base-Emitter

Junction for low
emitter currents
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* Ions lose energy as they
travel through the device
 Jon/energy combinations
need to be tailored to
specific device geometry

Emitter Contact
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Messenger-Spratt relation
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Deviation from the Messenger-Spratt relation
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Ionization in the field oxide of the BJT causes
gain degradation, too.

Empirical description of gain degradation by
highly ionizing ions:

displacement jonization
damage @
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Annealing Factor

Annealing factor
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High fluence shot. Low fluence shot.
SPR pulse 1s more like Gaussian while the Late time gammas do not allow

ion pulse is square measurement of AF up a ms.

The transients of both high and low fluence SPR shots can

be simulated with ion beams by matching the final gains! @ ﬁgﬁgﬁm
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Annealing Factor
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4.5 MeV Si fixed pulse length, 7,= 0.22 mA

AF changes monotonically increases
with fluence

Recombination current plays a
significant role, changes V',

Much less dependence for 9 mA

Annealing factor
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36 MeV Si fixed pulse length, 7, = 0.22 mA

AF immediately after the shot
decreases with fluence

*  Large photocurrent causes significant

annealing during the pulse.
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DLTS for SPR and ions
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SPR neutrons
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The same number of defects (defect introduction rates) cause the
same amount of gain degradation and the same amount of increase
in the recombination current independent of the type of irradiation

(neutron or ion). _
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* Jon beams can match damage of short high fluence
neutron pulses with same pulse length
* Jon beams can reproduce annealing factors of neutron
bursts 1f the final gains are matched
 DLTS shows that same type of defects are created by
neutrons and 1ons, and the same number of defects
causes the same gain degradation
* There 1s non-linearity for both neutron and ion
irradiations for extremely high fluences
* For light 10ons there 1s a non-linerary due to trapped
charge in the field oxide at low fluences
* The annealing factor as defined in the past was found
to be fluence dependent -
() i

Conclusion
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Role of the base leg diode
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Choice of ion beam energies
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Energy scan proved that for low emitter
currents the damage in the base-emitter
junction effects most the gain
degradation while for higher emitter
currents the neutral base plays a role, too.
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