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mportant Parts of Failure Analysis

Corrective Action

Failure Localization
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; # Purpose

To describe the basic physics needed to
understand backside technique application

and physical preparation of samples for
backside IC analysis.
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4’. Outline
| « Introduction

* Basics

 Light transmission through silicon

« Optical image formation through silicon
« Backside preparation techniques

* Global Si thinning

 Local Si thinning/Precision probe hole milling
« Addendum Material: Backside FA techniques

» Passive (emission-based) techniques

 Active techniques

« Conclusions
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Why FA from the Backside of the Die?

Multi-layer metallization new packaging techniques e.g.

LOC ( Lead On Chip)

Flip-Chip

IIXXXIIXXIIXIXIIIXI

Flip-chip substrate

Data taken from Fujitsu
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Wirebond vs. Flip-chip Packaging

Bond wire
interconnects

v

'

Active transistor region |pnterconnects

Underfiller

/

/000000000000 00000

Flip-chip substrate

Package substrate

Wirebond package die Flip-chip packaged die
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o C4 ( Controlled Collapse Chip
‘ Connection) Technology

Al Pad (Metallization)

[ Cr = =
——— Phased Cr\Cu (50\50) }Adhesm"’ Barrier

—— Chip Passivation

C4 Bumps Chip

/ Cu (Wetting)
- Au (Oxidation Barrier)
Solder Bump ( 5% Sn, 95% Pb)

/ Chip

s Solder Bump

~—Top Side Metallurgy ’e : ®

N

Substrate Metal Pads Substrate
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& Major Benefits of Flip Chips

* Flip chips are more slim and compact ---> lighter weight
products

* Flip chips permit higher speeds and enhanced electrical
performance ( electrical parasitics and paths are reduced

* Flip chips permit a higher 1/O density at smaller chip size

* Flip chips permit a higher power dissipation/ enhance
thermal dissipation
----> flip chips are used in multimedia products, portable
electronic products, audiovisual products, ( notebook)
PC‘s, workstations ( microprocessors), etc.
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4" Transmission Through Bulk Si

R = Reflection

T = Transmission 4
I, l : R, = (n-1/n+1)? ~30%
s !
Y
Surface roughness
A 1 dsi

Volumé defects

7

Tg=1y/ 1= (1'R51)2 * exp(-a dg;)

—

scattering due to og; (A) = bandgap related absorption
surface roughness a,,(A) = free carrier absorption
Qyorume — SCattering due to volume

defects ( to neglect)

ISTFA ‘07 - Flip-Chip and Backside Techniques



‘ Scattering due to surface roughness
Images (a) - ( d): substrate doping 1 x 10" cm3; dg;= 150um
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= rms ( root mean square) < 5nm
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il ‘ Free carrier absorption

(intraband absorption, o)

PHOTON WAVELENGTH (pm)
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SILICON
T=300 K

oF
10 FREE ELECTRONS

v

0T T T 7T T T T T 7711

l

i

2 =

: i
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N, =5x10% cm3 =1 ID= ~4% (d =400 um, 1.3 p; PHOTON ENERGY (eV)
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Band-gap related absorption

(interband absorption)

Band diagram of Si Transmission of undoped Si
4 \-/—\/ . 1.0 .
Si d=200pum
.gﬁ 0 E i 0.6
Q .
s 0.4
0.2
-4 . .
L T A X 0O 09 1.0 1.1 12 13 14 1.5
Impulse vector k > Wavelength A >
10°
Eg:1‘12 CV(3OO K) a(cm'l) 103
Si (E~=1.12e¢V or 1107nm) 101
T proportional to e-dsi 200 600 1000
Wavelength A ( nm)
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}' IR Transmission
' 625 um of p-Doped Silicon

100 |

10 1 )
(c)
1 |
|
0.1 ] | Siindirect
| bandgap
0.01° |
l

(d)

1.0 1.5 2.0 2
Wavelength (um)

.5

Dopant Conc.
x 101 cm
(a) 1.5
(b) 33
(c) 120
(d) 730
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}' IR Backside Imaging

llluminated images: pg psirate=1*101°cm-3; HgCdTe detector ( IR Labs)

X20 ke

{390um, x20 |

1 4 !.'.7‘61“"3', -y . .
=L A5 2 — - LR b o
e A
R o
:
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} Spherical Aberration

geometrical optics:

thin biconvex lens

Y Y A 4 Y A 4

Planparallel Si of thickness dg;

Al = Al (dg;, ng;, NA)

— sperical aberration
increases with dg;
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*‘!elss IR confocal LSM ( 1152 nm)

Psubstrate = 1X107%cm-3; d=220um; 100x objective NA=0.9
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ﬁ)ptical Image Formation from the
Backside of the Die: Key Issues

‘Surface roughness: rms < 5Snm 0.61-A
res =
* reduced lateral resolution: NA
—— best image formation: confocal laser scanning
microscope

* lens failure for large NA: sperical aberration
—— use of a corrected microscope objective ( 100X)
or thinning the die
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% Backside preparation techniques

Global Si thinning
eCNC milling
emechanical grinding/ polishing

oRIE

Local Si thinninq / Precision probe hole millinq
oF1B
o MC technique
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}- Cross-section : plastic package

Glue Die pad Mouldi/ng compound

aup)
Pins /\Cjﬁ@

Bond wire Chip
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Maintaining Electrical Continuity

Step 1: Grind/polish through
bumps and circuit board s D

Step 2: Cut excess material
away from BGA package

mﬂ A NN N f\/ﬁfl'\
Step 3: Place remaining BGA T T T

package in PGA package and

rebond to exposed wire shafts /\

_— Exposed bond
wire shafts

Package cut
™ lines

New bond wires
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Schematic view of the CNC
milling machine

Motor spindle CNC with a
milling head of hard metal

High-frequency spindle
(45000 - 60000 rpm)

diamond milling
head diameter 2 - 3mm

device

Container for
water-cooling

Micrometer screw
for adjustment

CNC-machine
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Chip size marked, Plastic removed down Lead frame removed
plastic milled to the leadframe down to the glue

'imnm.mm.r.m

Glue removed Milling of the Si substrate Si substrate pollshed
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Si Substrate Surface after CNC Milling

SEM image (1500 x) Surface topography ( AFM)

X 10.000 pm
Z 5000.000

no polish

8i0104.010
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Si Substrate Surface after
Mechanical Polishing

(I em A PN
o ’ v 2
Moulding/eompound }

X 2.000 pm

SEMimage  SEMimage “** |
(700 x) (1500 x) Surface topography

( AFM)
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}'CNC Milling on Wafer Level

Top View Top View

N«
-
P

...~....,,,,m§tress No strg.sé‘

Protecti&h..,,% faulty dle
sheet \ & " Wafer

i Wax

glass round for mechanical
stabilization
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}' CNC Milling

- Global thinning of Si

* min. remaining Si thickness: ca. 100 ym
* large areas >= 1 cm?

« planarity/ surface homogeneity preserved
(ca.20 um at 1 cm?)

« surface roughness: rms <= 3-5 nm

« suited for packaged devices, flip-chips, wafer level

ISTFA ‘07 - Flip-Chip and Backside Techniques
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*‘Mechanical Grinding/ Polishing

epoxy resin

ISTFA ‘07 - Flip-Chip and Backside Techniques
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}»‘ Grinding/ Polishing

- Global thinning of Si

* min. remaining Si thickness: ca. 100 um
« surface roughness: rms < 3-5 nm

» use for packaged devices limited

* major challenge: even surface
Outer edges thinﬂed more than the center
a4
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4" Silicon Removal by Dry Etching

Requirements:- high etch rates > 10 ym/ min
- highly reflective shiny surface after etching
- uniformity
- remaining Si thickness after etching ca. 100 ym

- functionality of the chip preserved

—  High etching rates due to high plasma density e.g.:
* Microwave plasma + RIE
* |CP ( Inductive Coupled Plasma) + RIE
« ECR ( Electron Cyclotron Resonance) + RIE

ISTFA ‘07 - Flip-Chip and Backside Techniques 30
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50um

——

optical

50 um

Surface viewed in SEM

Nextral NES860
200 pm — high density

Surface in

microscope

RIE - Backside Etching

Die thinned to

X 20 pm/div
Z. 800 nm/div

AFM
Topology
peak to peak
~ 0.5um

X 20 pm/div
Z 400 nm/div
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conventlonal‘FIB/ IR-Micros cope

FIB

Silicon substrate

N

_J rrrrrﬂ N

Flip-chip substrate

/ high speed FIB process
A

-

Focused ion beam Focused ion Focused
~ 6nA beam ~30 n 5 ion beam /

~ 30 nA

|

nozzle
éé/e XeF,
Xer* 4/ XEFZ nozzie J XEFZ

S=SiF, +“—SiF,

> up to 1000x faster

ISTFA ‘07 - Flip-Chip and Backside Techniques
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Gas-Assisted Etching of Si with FIB

e Enhanced material removal
FIB ( Ga*) e NO redeposition
Nozzl\\ ° selectivity

AN XeF, Molecules

Al | W | Si |SiO,/Si,N,

XeF, 0 | >10 | >10 [ >10

S1 Substrate

( FIB assisted) surface reaction:

(Ga+) 1

Si +2 XeF, — SlF4 + 2 Xe
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1. Global Si thinning

2. Identification of alignment
points for CAD navigation

100 x 100pm?

3. Local Si thinning with high-
speed FIB etching process
( time required: ca. 10 min)

loum 4. Precision Probe hole milling
with FIB
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. ' Supporting Navigation by
Correlating to CAD-Data
3 Point Alignment of Layout to x-y-table of FIB using CAD-Navigation

ri[ [11  Merlin’s Framework XL — Maskview/FEl v6.0p1, (c) Knights Technology

UR(43116.00, 43101.00) Top View
LL(0.00, -15.00)

+(21291.85,25269.08) Drawing completed.

[11  Merlin's Framework XL — Maskview/FEI v6.0p1, {c) Knights Technology

UR(4940.17, 39531.82)  Box Zoom In/Out [pt-pt]
/]| |LL(2870.13, 37461.78)
+(3783.76,38854.59) Drawing completed.
= 3 isc XHaj an oon en ose
F 4 | I
! 11
e SRR S o ool b
|
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etched trench ( Micrion)

— 19A~m-3-
psubstrate_ 1x10"cm )

ISTFA ‘07 - Flip-Chip and Backside Techniques
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Endpoint detection with
FIB ( Micrion)

;’

Focus on the

backside of the die Focus on
{ — broadband light, he 'C
green source =
filter < IR filter
Optical
___________________________________ microscope
| IAZ - dSI
d [
> IC

(active region)
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#i Precision probe hole milling

SiO, w/_

deposition
— E—

\ / XeF, assisted
10 m mlllllng

SiO, deposition
and reopening
of the holes

Oxide Diffusion‘

Interlayer Metal

oxide line petal }eposition
and cutting the
old signal lines
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Metal line (signal)
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Circuit Edit Schematic

| AN o8

Old signal | FIB metal
deposition
' B I
New signal

FIB Connection
Locatlons A&B

£ FIB metal
deposmon

Hl
. FIB Signal
= Cut Location C

_
P 4 'Device modification from the
backside of the die

ISTFA ‘07 - Flip-Chip and Backside Techniques
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% FIB for backside preparation

 Applications of FIB for backside FA: device modification
mechanical or e-beam probing

* High speed FIB etching process: local thinning of Si
( typically 100 x 100 uym?)

* Precision probe hole milling similar to standard FIB frontside process with
spatial resolution < 0.1um — FIB is the most precise tool for backside
preparation
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}!&A\ser MicroChemical (LMC) Etching

Laser Beam

SiCI4( Slewed at 20 mm/s) cl,

Si + 2Cl, — Si cﬁ1

A \ ey
loum | Silicon substrate (Flip Chip)\ | "
Laser Annealed Floor \ Active IC \
Molten Zone Cut Depth: 0.5 - 80 ym
(2 pm dia. ) per Laser Scan
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IR Confocal
Viewing i

Schematics of setup for
LMC Si-etching

}Color CCD

Camera
- Zoomed
Magnification

2 Viewing
; <_ . Tungsten

([ 7 J 4 , :
(P« _—F— J lluminators

Art-lon Laser
CW 488 nm

to Galvanometer 3
EO Beam Deflection - = . Long Working
Modulator | Distance Objectives
(Pockels Cell)

Dual Independent

Il ' Process Chambers
- } Precision Stage
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\ off

LMC etching and deposition

10_pm 16pm 10_pm

Silicon etch at Silicon etch at Platinum deposition at
100000 pm3/ s 100000 ym3/ s 100 ym/ s

ISTFA ‘07 - Flip-Chip and Backside Techniques 4
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;b'LMC Process for Backside

FA Applications

1. Global thinning of Si ( e.g. CNC
................. milling); LMC reveals alignment
"""" fiducials;
200um
2. LMC etching of trenches over
the regions of interest ( typical
area 500 x 500 pm?)

3. Deposition of a dielectric
isolation e.g. laser deposited oxide

4. Local repairs at the base of the
isolated trenches typically using a
FIB. For longer interconnects
(interconnects between trenches),
laser deposition is used.
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Benefits of LMC technique

4~
- Speed enhancement of several orders of magnitude

( microchemical reaction) compared to FIB

- process spatial resolution Ax, Ay <= 0.5um
Az <=0.1um: endpoint detection via OBIC

- surface roughness achieved:rms typically 30nm

applications for backside FA: in combination with FIB
sample preparation for e-beam/ mech. probing and
device modification;

- outlook for backside FA: optimization of the illuminated
image / signal strength for various backside localization
techniques
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# Backside preparation techniques

Global Si thinning

e¢CNC milling _ 5

_large areas >=1 cm
emechanical grinding/ polishingl min. remaining Si thickness: ca.
RIE _  100um

Local Si thinning )

areas up to 500 x 500 ym?
e|_MC technique > min. remaining Si thickness: ca. 10um
spatial resolution limited (ca. 1 uym)

FIB ( high speed process) |

Precision probe hole milling

oFIB high spatial resolution (ca. 0.1 ym)

ISTFA ‘07 - Flip-Chip and Backside Techniques 47



V

« Backside analysis techniques fall
into two categories:

— Passive (Measure light emissions)

— Active (use light, e.g., to influence
circuit operation)

« Sample preparation and pitfalls are
similar

- &
4" Defect Localization Techniques

ISTFA ‘07 - Flip-Chip and Backside Techniques
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} Backside Techniques

 Emission based
— NIR light emission
— PICA - IBM
 FIB/E-beam
* Optical probe based
— electrooptic based
— Laser voltage probe (LVP)
— LIVA
— IR-OBIRCH/TIVA/SEI
— SDL/LADA

ISTFA ‘07 - Flip-Chip and Backside Techniques
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hotoemission Microscopy ( PEM)

1l I | A i
n=nm=;mmum=n_u..-.-f}-. I
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Emission Theory“E

« Recombination can be \/\
iIntraband or interband 3 "./
» Momentum must be |
conserved - phonon 5
E
|

emission likely

« Eg=111eVor -
(1.12 um) at 300 K 0= <
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: ' * Only chance for short

wavelength emission is
from hot carriers

« dE =kgT,

* Possible under high
field situations

* Visible: 390 - 770 nm

* NIR: 770 -1500 nm

Emission Theory

\

hy

~— AK

rOPTICAL

~ACOUSTIC

e

% k [111]—
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Junction: Reverse Bias

he 2 Basic Mechanisms of

A i
4’ Photoemission in IC

Forward Bias

Scattering of Field
Accelerated Carriers
(+ Recombination)

E 000000, |~ - .7'
Cc ] g
i Tunneling
E v

n ‘Space ' p
Charge
Region

v
> Minority Carrier
Injection

Photoemission via
Band-Band
Recombination

Q.00 Q (@]

T ML

(000000000000000]
VO o] m/

n P
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% Si Integrated Circuit Emission

Light Emitting Process E-Field
Forward biased junctions |Low
Reverse biased junctions | High
Latchup _OW
Transistor saturation High
Gate shorts Mixed

ISTFA ‘07 - Flip-Chip and Backside Techniques
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Intensity | [
(arbitrary 40 |

units) 44| Forward bias

20 |

- Reverse bias
10

0 Lt cmtmeooe™™
04 06 08 10 1.2 14

Wavelength (um)
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_
\#_ n-MOSFET Saturation

10

Intensity 87
(arbitrary |
units) 6

4t

0.4 06 08 1.0 1.2 1.4 1.6 1.8
Wavelength (um)
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EM Inspection from Backside:
Key Issues

Key issues:

Detector—— [

p
"""" emiSSion

eAbsorption by free carriers

m ( doping density of the Si substrate)
) : b ereflection micrograph:
nSi:3'5 / O total reflection 17°
— TV —hard to get +
Si substrate \ o reduced lateral resolution
metallization of IC

light emitting defect
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ad ' Cameras

* Intensified cameras
— Developed for military night vision use

— Spectral response centered in visible
range

« Cooled Array Cameras

— Developed for high performance imaging
applications (Astronomy)

— Many detector materials and formats
available

— External cooling usually required
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Intensified Cameras

} TV Camera
==-Phosphor

Image /-— Microchannel
Intensifie

BN- photocathode

Filter- — e

- IMage
Processing

Optical o
Microscop /Emlssmn
Electrical Stimulus DUT

ISTFA ‘07 - Flip-Chip and Backside Techniques
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¥’A‘ Intensifier Response
| 103

Gen III Red

Gen lli- Blue
Peak 102
S(renrfll\:\ll\)"ty Gen llI-NIR
101
100
10-1
0 400 800 1200

Wavelength (nm)
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g
# Silicon CCD Cameras

« Cameras commercially
available from several
sources

* Arrays made by many '
Companies (eg http://www.photomet.com/
Tektronix, Kodak, Thompson, etc.)

« Mature manufacturing technology

* Cooling can be Peltier, liquid/Peltier, or
LN,

ISTFA ‘07 - Flip-Chip and Backside Techniques 61



%'1 OO.

Quantum 80}

Efficiency

(%) %
40 |

Si - CCD Array QE

20+

0

040506 0.7 0.8 091.0 1.1
Wavelength (um)

ISTFA ‘07 - Flip-Chip and Backside Techniques

62



NICMOS Array

';,V
NICMOS - Near Infrared

Camera Multi-Object
Spectrograph

« 256 by 256 pixel HgCdTe
array

* Optimized for use between
800 & 2500 nm

* First Array with SI-CCD level
performance in NIR

* Flown on Hubble Space
Telescope - February 1997

- « W=
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70 IIIIIIIlIIIIIIllli[llfflllrirl‘lllI

-
-
-
-

60

50

|

40

B—

e T T T R ER R R =

30

20

Quantum Efficiency (%)

10 T=77K

lllllllilllll‘[lllllll‘l"

o-l_llllll_lllllllllllllllllllllllilll

800 1050 1300 1550 1800 2050 2300 2550
Wavelength (nm)

NICMOS Array Response

Read Noise
(77 K) : <40 e-

Dark Current
(77 K): <1els
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},’ Other NIR Arrays
“%" Other arrays are available with low noise NIR

response.

— InSb (Indium Antimonide)
* 64x64 to 1024x1024 pixel formats
« Spectral response ~0.6 to 5 um
« Operating temperature 35 K
* Infrared blocking more difficult

— PtSi (Platinum Silicide)

« 256x256 pixel array format
» Spectral range 1 t0 5.7 um
« Operating temperature 79 K

http://www.sbrc.com/
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‘ PEM
| 1.2
ERENAN Kux et al.
s, 19 MOSFET 1.0
2 300K
o g 0.8
£ HgCdTe (T=77K)
= 6 \ / 0.6
-g A Si bas&d detector
1 4 .
- & 0.4
2
g 2 0.2
m o
0 ..... A LS e —
05 10 15 20 25 30°

Photon energy [eV]

Sensitivity [A/W]
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PEM

Frontside illuminated image Backside PEM ( Si CCD detector)

- -Emission spots : i

dSi='I 50Um, r‘substrate=1X1 0'%cm-

leakage=2HA, V=3.5V after electrical overstresss
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30V S-FET: vertical
Power MOSFET

Backside emission microscopy
(Si CCD detect)

Schematics of device

| 1ps=2UA bei V=30V
~ (Vgg=0V); thickness of Si
substrate: ca. 100um

-
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V

PEM Backside emission signal: n-
channel MOSFET

V=3V, Vgp=3.9V, Ipg=1.9mA, 10
sec integration time

A
Backside illuminated images

::::::
>,

X50

| Backside emission microscopy with HgCdTe cmera;
J Measurements performed by A. Zaplatin IR Labs

69
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Reflected Image Emission Image

1.5 sec. exposure, l;p =1.47 mA

ISTFA ‘07 - Flip-Chip and Backside Techniques
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iy

'Saturat_i_gln Emission

~

—

Reflected Image Emission Image

Full thickness die, 10 sec. exposure,
lpp = 225 pA

ISTFA ‘07 - Flip-Chip and Backside Techniques 71



ckside Def eteion

: . —e $on )t AT
i L o -
A s e ... _ g SR
)
L LAY
% 1%
.

Full thickness die, 200 sec. exposure
l,p =200 LA
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- &
4" PEM Conclusions

* Physics suggests stronger light emission in
NIR than at visible wavelengths

« Technology to detect NIR emission
relatively new

 Head to head comparison of visible and
NIR cameras proved NIR emission is
stronger

« Similar signal to noise images can be
acquired with up to 1000 times shorter
exposures

ISTFA ‘07 - Flip-Chip and Backside Techniques
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V
}‘ FIB/e-beam Analysis
« Adaptation of e-beam probing

to flip-chip analysis has proven
to be tedious but doable

 Method used FIB with gas
assisted etching to expose

conductors for probing

» Inverted CAD database used
for automated navigation

» Optical methods are preferable
as little preparation is needed

ISTFA ‘07 - Flip-Chip and Backside Techniques
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PICA

* Picosecond Imaging Circuit
Analyzer (PICA)

— Kash & Tsang, IBM
« Well known that well working gates

emit light during switching T T
. . . 300 - T {a) ring ascillator
« Emission is strongest when gate | 33’ oo
. . o) TR -
voltage is half of the drain voltage - _ 2°{"™"*"7 = *° 28 ]

the midpoint of the logic transition *‘g” ool iV

PICA uses a strobed, mtensmed o as adb0 et 70 75 80

detector to gather spatial 150 e et
. . . . . > [COUNTER VALUE] (b) countdown |
information and time information G Jwn hg R LR

= 100 + :

* The use of optical information
emitted from IC makes PICA non- 50
invasive and fast

T

1‘::’L?ﬁll 132 133 134 136200 201 202 203 204

TIME (nsec)
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PICA

Typical Photocathode Spectral Response

e (Gated detector used to

stroboscopically acquire 200
timing information g 10% quantum
— ——=

« Thermoelectrically cooled 5 & —— r_q:;f"' sificiancy
microchannelplate = /n; e
photomultiplier (MCP) witha g =< (7/ NAEZ
position sensitive anode 5 10 ! 1 1% guantum
used to collect light o ¢ T elticlency

« Dark count per pixel g = —Tsko
~0.001/s g ¥ Bidikall \

»  Photon timing with 100 ps S '3 = oy
accuracy possible 2 o

« Detector response excellent 2 /,-—-' \ !
for frontside, marginal for o T
backside applications 300 400 800 830 TOO B30 909 1099

wavelangth (nm)
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i Single Point PICA

Traditional PICA technique
— Collect all data from field of view (parallel acquisition)
— Requires 2-D intensified array camera
— Collection efficiency and photon flux yield long data acquisition times
« But you get timing information from every transistor in the field of view
« Single point PICA
— Position single photodetector over transistor of interest
— Photodetector can be extremely fast and sensitive to IR light
« More detector choices than in traditional PICA
» |R-sensitive detectors better for backside applications
— lIssues
» Positioning detector
« High NA lenses for resolution and collection efficiency
— Need solid immersion lenses
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Solid Immersion Lenses

Lateral resolution limit in optical microscopy
determined by

— Wavelength of light
— Numerical aperture of optical system
— Index of refraction in object space
* NAIL
— Numerical Aperture Increasing Lens

— Resolution of 243 nm reported at 1050
nm wavelength (M. Selim Unlu, Boston
University, March 2002)

 SlLs for backside FA made
of Si

— same material imaging
through

slider

solid
irmrnersion
lens

www.physicsweb.org

Object Space
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‘ Single Point PICA

 Method is greatly
simplified compared
to traditional PICA

— High NA lens Fiber optic cable

— InGaAs \ Detector

photodiode y
— Fiber optic cable
* InGaAs detectors I

have good sensitivity
in IR and are fast
t~100 ps)

e Method assumes that
you know which
transistor to look at

— Serial data
acquisition

Immersion lens
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i i
_ ‘*‘"Electrooptlc Effects
1 First effects observed in 1875 by

Scottish physicist John Kerr

» Isotropic, transparent substance
becomes birefringent when placed
in an electric field

» Optic axis corresponds to the SV
direction of the applied field

An = A, KE 2

« Kis the Kerr constant, E is the
applied field, |, is the vacuum

wavelength in meters ZﬂKf V2
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# Pockels Effect

* German physicist, Fredrich Carl
Alwin Pockels GN

- Studied electrooptic effects in 1893

* Pockels effect has birefringence
proportional to electric field to the

first power and thus the applied
voltage

« Exists only in crystals which lack
center symmetry

 KD*P and lithium niobate are
common examples

* I3 IS the electrooptic constant 2“()
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5#- Electrooptic techniques

Refractive index related to electron and hole
concentrations

* N, N, are electron and hole concentrations

« |deais to sense changes in index of refraction
through device backside

« Effects are very fast, allowing GHz frequency
measurements

noqz b Nel.os X thko.so ]

e

An=—= :
27| m m,,

ce
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Pulsed Nd:YLF (1.3 mm) laser (50 ps)
« Light split into two beams with custom Nomarski prism
« Compare phase of reference beam with probe beam

* Phase difference translates to a polarization change when beams
are combined

« Polarization modulation converted to

. . Active
amplitude modulation Device
Tungsten
Optical Light Source
Isolator .
1300nm A\ 23] LPF
Nd:YLF 4 >
Laser PBS YIG PBS p Lens  BS MO
WP BS NP nffffffiflsPF
PD2 , Lens
Preamp 2
IR
- Camera

>——— To Detection Eiectronics
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; 5#- Laser Voltage Probe (LVP)

« Work first done in early 1980’s

« Early work in Silicon done at Stanford University by
Bloom, and Heinrich

* Franz-Keldysh effect - electro-absorption
— Electric fields > 104 V/cm
— Tunneling states created
— Tunneling states effectively reduce the bandgap
— Photons near bandgap wavelength now absorbed
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Absorption Characteristics at

=24

High Electrlc Field

W‘th/applled field

——

A

« Change in absorption
with applied electric field

 Probe beam wavelength

s fixed Aa=(a-a)/ 4
e absorption at probe

wavelength changes

Normalized Electro-Absorption
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absorption change
with wavelength

« Maximum effect at
1065 nm

e 1064 nm s
convenient
Nd:YAG line

« Magnitude of effect
IS ppm level

il
}, LVP
| e Measured F-K Aa (x10-°)

2.50

2.00 +

1.50T

1.00T

5.00T

0.00

Wavelength (Lm)

1.035 1.05 1.065 1.08 1.095 1.11
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A

« Equipment setup
similar to other e-
o based methods

« Mode locked
laser allows ~12
GHz bandwidth

* IR laser limits
spot size to ~0.7
mm

LVP

Silicon IC

Collimating Faraday Polarizing
Lens Rotator Beam Splitter | /4

| -

==

Mode Locked Laser
100 MHz, 1064 nm,
~35 ps pulse width

IR
Objective
Lens

fHitetdt

Photodiode

Laser sampling pulses \

To Detection

» Electronics

UL
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o LVP example
g J. E-Beaim (50ps sampling pulse)

« Comparison of e-beam
to LVP

* Both waveforms use
stroboscopic technique

e e-beam pulse width

el

MITA|

hvw«

baal ) b

DM

W

kw 5 min. avg.

Wm 30 s avg.

can be changed ; ,,
« Laser pulse width O\ O Min-ave:
cannot o
« Cannot reduce BW of 4 30savg.
LVP to improve signal
< >
20 ns
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LVP Summary

:;,'

* LVP systems commercially available

* Improvements in IR laser technology will improve
BW (Ti:Sapphire lasers have fs pulse widths but not
in IR)

 Interaction of IR laser with circuit operation needs

research - LIVA and related techniques rely on this
interaction
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#‘ SLM Techniques

« Scanning Laser Microscope (SLM) based analysis
techniques
— LIVA (Light-induced voltage alteration)
— TIVA (Thermally-induced voltage alteration)
— SEI (Seebeck effect imaging)
— OBIRCH (Optical beam-induced resistance change)

« Useful for localizing open and shorted
interconnections simultaneously

 Demonstrate front and backside IC examples
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-
4" Light-Induced Voltage Alteration

(LIVA)

* Enables:
-quick localization of defective junctions
and junctions connected to defects
-imaging of transistor logic states (off or on)

« Easily implemented on existing scanning
optical microscopy (SOM) equipment
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¥’_ Electron-hole pair (ehp)

Generation from Photons

« Photons injected into Si with energies greater than
the indirect Si bandgap (~1.1 eV) will produce ehps

 Nonrandom recombination of ehps will produce a
“photocurrent” that affects IC operation

Laser

n-S1 —e) ¥ (h— p-S1
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LIVA System

IMAGE
> —*{ MONITOR
AMPLIFIER PROCESSING
A
DETECTORS
|
fro——————————- Ciaininteie >
| I
| |
CURRENT | |
SUPPLY | |
IDDQ L1U |
I
v | |
Ic |
MATRIX ' <
[ raser
SOM SERS
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™

9" LIVA Signal From Open
Conductors

~

Laser
|

Open Conductor

AV to Downstream
Logic
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i i LIVA Example: Open Conductors

LIVA image LIVA/Reflected image of
the same field of view
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i LIVA Example: Logic State Imaging

wee

{0 L1 n
ol

; I iwl t
Mt] ? gJ‘fL

Transistors generate LIVA difference  Reflected light image
a LIVA signal from between two logic
nonrandom ehp states
recombination
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- . ] ] n mgm
& IR Transmission in Silicon

Transmission (%)

2.07
Si Bandgap (undoped)
1.5° 1107 nm
1.07
1064 nm 1152 nm
05 1320 nm

0.0—= — T
800 1000 1200 1400 1600 1800
Wavelength (nm)
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-
ﬁR Transmission Through 625 um
of p-Doped Silicon

Transmission (%)

100 | @)
10 ] (b)
I (c) Dopant Conc.
1 | x 101 cm-3
0.1 ° | Siindirect (a) 1.5
| | bandgap (b) 33
i | ~ | (d) 730
1.0 1.5 2.0 2.5
Wavelength (um)
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*‘ IR LIVA Backside Example:

Open Metal to Silicon Contact

Backside IR LIVA of defect Reflected IR image
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*‘IR LIVA Backside Example:

Open Metal to Silicon Contact

i l

! 'f J?‘ il
m l“&ﬁuu

f;gg s IS
|l

Backside IR LIVA image Reflected IR image
of defect
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# Seebeck Effect

« Thermal Gradients Produce Voltage Gradients on
Open Interconnections

—typically uV/K for metals

* Localized Heating Using Laser
Focused Laser
— already used to detect cold hot cold
voids in conductors e- e-
— changes voltage of oben conductor
open conductors P

— alters IC power demands

ISTFA ‘07 - Flip-Chip and Backside Techniques 101



Localized Heating

S

e 1320 nm Laser
— 120 mW Nd:YAG laser

— yields localized temperature variations of
about 120 °C max

— photon energy will not produce electron-
hole pairs

 avoids photocurrent effects
 Reasonable Spatial Resolution
—about 1.3 um
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*‘Backside SEI Example - 80C51

SEl Image (lowmag) Reflected Image
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-metal- pon mterconnect contrast
thermocouple or Schottky barrier effect
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T
#‘Thermally-lnduced Voltage

Alteration (TIVA)

* Local Heating Changes Resistance of Short
— produces a change in IC power demand

« Effect Previously Demonstrated as OBIRCH
(Optical Beam Induced Resistance Change)

* Increased Sensitivity Using Constant Current
Biasing - TIVA
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Backside TIVA Example - SRAM
Particle Short

O

Single “spot”
signal

TIVA Image (low mag) Reflected Image
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i Backside TIVA Example - SRAM

“'—'-‘ L —

-particle under metal, not visible
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# TIVA/SEl Summary

* Demonstrated New Thermal Probing Technique for
Front and Backside FA
— SEI for open interconnections

— TIVA for IC shorts

* Excellent Spatial and Signal Sensitivity for Failure
Localization

— thermal conduction through metal

* Easily Implemented on Existing SOMs
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Conclusions

« Continued growth in use of flip-chip packaging and
multi-level metallization processes is driving
development of backside analysis techniques

« Backside preparation techniques and their effects on
device analysis reviewed

« Primary tools rely on light
— Light emitted by the circuit

— Changes in circuit operation because of the presence of light
beam

— Changes in optical properties of materials caused by electrical
operation of the circuit
* Non-optical tools are destructive and require extensive
preparation, but are effective
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