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* Dry semi-desert, but lots of science
* Nuclear, electronics, nano-technology
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Polymer Performance, Degradation and Materials Optimization

Environmental
Polymer Degradation

Polymer
Photodegradation

Degradable

Polymer
Biomaterials

Controlled
Drug Delivery

Service Life

New Materials

Polymer Performance:

A research field that is degrading into

numerous sub-areas

- our research interests are expanding!

Prediction

Polymer

Degradation
Characterization
Analytical techniques

Polymer Thermal
Degradation

Degradation
Modeling

Materials
Degradation
Mechanisms



performance polymer materials

« Know chemical and mechanical properties, processing variables
» Select compromise material with optimized desirable properties

PROPERTY

STRUCTURE PROCESSING

Environmental
Influence

OPTIMIZATION @Sandia

National
Laboratories

Aqging, degradation
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ance needs of natural rubber many centuries ago

Rubber, when sealed off from light and air lasts very long

Wooden objects with rubber
additions made 8 centuries ago

6th-century mural featuring
two rubber balls, Aztecs More than 250 years have passed since

rubber was first introduced in Europe.
Natives in central America used rubber
for various purposes prior to this

Like many other polymers, elastomers will chemically age
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ance needs of natural rubber many centuries ago

* In 1850 rubber springs were used for simple wagons.

* A railway viaduct in Melbourne uses 12 mm thick rubber blocks in 1889 for support.
Today the original NR parts are still functioning. An inspection and analysis of the
rubber in 1963 showed a perfect condition.

* In London some buildings (Bishopsgate/Liverpoolstreet station and Victoria Station
building) are built on rubber blocks. The largest dimensions of the used blocks are
1200 mm by 1000 mm.

*These early applications are important as it has been possible to closely monitor the
behavior of the bearings installed under the Pelham Bridge in Lincoln.,

* The inside of a full natural rubber bearing that had been in service for about one
hundred years was a little bit stiffer than it was originally but with little change in
functionality.

sTaking apart a bearing that was used for about 25 years and measuring the hardness
from the outside to the inner side showed that the stiffening of the rubber was limited
to a depth of less then 5 mm.

What do we learn? Materials age differently as a function
of depth. Macro-heterogeneity and micro-heterogeneity
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Basic lifetime prediction

perposition of exposure times often used for predictions

Age, expose, observe, test specimens, prediction based on trends
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Figure 1. "Master™ ageing curves for air and seawater

From NatuurRubber 36, 2004

Problem: Costly long term experiments, unreliable short term tests @ Sandia
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Figure 2. Shiff factors used to construct the master curves in Figure 1.
The fit lines yield E; = 90 and 63 Elimol for air and seawater, respec-
fively. The dashed cirve is the seawater data with the femperature
dependence of oxygen solubility. Inset: Measured oxygen solubility for
seawater, along with calculated values.
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‘ Lifetime prediction of polymers

Ifferent ways to understand and describe performance

Aging, Degradation

/

Physical changes Chemical changes

Stress Relaxation Oxidation, hydrolysis,
other reactions, Mw changes

Time dependent constitutive models Polymer science

FEA modeling Materials characterization
Mechanical properties Journal: Polymer Degradation
Fatigue and stress/strain exposure and Stability

Brostow/Corneliussen book

RH, R*, 02, Mw,
scission + crosslinking
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Morphological considerations
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As materials have complex micro-
structure, degradation and
performance will depend on
different domain-sizes.
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‘ Advances in Technoloqgy

performance studies?

Nano-technology and polymers?
Some targets are:

Non-random polymerization
Controlled molecular architecture
Design of supermolecular structures
Custom hybrid materials

Increased performance features
Improved processing

How do today’s trends in nano-technology affect polymer

New characterization technigues
Visualization, imaging

AFM and IFM surface analysis

NMR imaging, faster acquisition
Imaging capabillities of SIMS and XPS
IR mapping and direct surface scans
Raman microprobes

Efficient mass-spec analysis
Coupling of instruments TGA-IR-MS
Surface responsive detection QMB
Beam scattering and IR absorption-
reflectance spectroscopy

Sandia
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Q\mamic TGA studies for nano-composites

 Variables: Heating rate, conversion (weight loss), activation energy
« Complications: DLO, sample geometry and weight, atmosphere

and non-linear degradation processes
 Different models compete

Im: Use rapid thermal degradation to assess performance

Model Mathematical relationship Plots
Friedman In(de / dt) = In[Af ()] - E,/RT |In(dex/dt) s 1/T
Kissinger IN(B/T,")=In(AR/E,) +(1/T,)(-E, /R) |n(,3/Tp2) VS 1/Tp

Flynn-Wall-Ozawa

log /3 = log —C2 ~2.315-0.4567E, /RT

Rg(2)

log B vs 1/T

Coats-Redfern
(modified)

In{ P } = n{— AR }— E./RT
T?(1-2RT/E,) E.In(l-a)

In(BIT?) vs 1/IT

Higher Eact. are often associated with better materials
Experiments are fast but great care is required for meaningful studies

(M)
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Gomplexitv even in isothermal TGA studies

* Oxygen availability and diffusivity affect thermal degradation at higher T
* Mechanistic changes as a function of temperature
« Example: filled EPR material.
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Activation energy depends on temperature
Linear conditions will not always apply, other processes are important
Fast TGA techniques are over-emphasized for performance evaluations
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SIMS 180 concentration

IMS scanning approaches for DLO assessments

Example: Fast screening techniques for degradation

profiles are needed, important feedback on mechanism

» Used novel TOF-SIMS screening techniques with quantitative feedback
* Isotopic labeling (180) and direct analysis (160) are possible
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tions may change with temperature

» Two fundamental issues: The classic chicken or the egg problem
Plus, temperature conditions for perfect aging, do they exist?

Accelerated aging Evolution + accelerated aging

100°C, - N i
5 minutes - ‘ Hard boiled

> @ d eggs at 100°C

o ' (;‘l
ey ¢ Rotten eggs at 25°C

/;'

L%

Shelf-life aging

250C, 30 days (ambient temperature)

Henhouse aging
30 days

~EPmpeen®® | How did ‘nature’ establish the Santia
Mat elina, Dept. 1611 perfect aging temperature ? @ el |




‘ailure processes - time dependency

 Infant mortality often controlled by material robustness
 Random failure develops with time
» Wear out, autocatalytic failure increase and final life

X accelerated test What makes extrapolations difficult?

The usual suspects !!!

Failure

Complex materials

Processing variations, additives etc.
Failure modes need to be established
Need to determine acceleration factors
Variability in aging mechanism
Variability in sample to sample
Common extrapolations: Static versus dynamic aging exposure
Arrhenius (Just oven exposure or cyclic stresses)

Inverse power law S
Eyring Also: Fundamental anomalies”

WLF Sandia
) National
Mat Celina, Dept. 1811
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“en consumption-Predicting aging at low T’s

« Manifold, ampoules, GC-analysis, P transducer

« Fill ampoules to P, required

e Determines consumed O, and produced CO,/CO

* High dynamic sensitivity, polymer/free gas volume

» Measures oxidation rates ranging from 108 to 10-** mol/g-s

* Experiments require days to months at RT

« Many polymers consume ~20cc/g STP of O, to mechanical failure
* 10-13 mols/g-s equivalent to life-times of ~ 280 years at RT

Note: Rates are corrected for increase of P with T, dissolved gas and volatiles @ Sandia

National

Mat Celina, Dept. 1811 J. Wisg, K. Gillen, R. Clough, Poly. Deg. Stab., 4 (1995) 403 Laboratories



gen consumption-Predicting aging at low T's
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vaen consumption-Predicting aging at low T's

» Time/temperature superposition of oxidation levels in PU elastomer
 Curvature in Arrhenius plot (similar for O, and CO,)
» Time/temperature superposition for shift factor determination
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in Arrhenius plots — mechanistic change with T

 Evidence for curvature in many materials

» Combination of high and low temperature process
» Important for lifetime predictions

Eal Ea2
+ *exp
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Anomalous aging effects

« Anomalous aging effect in temperature-radiation environments

» Observed for various crosslinked polyolefin materials (cable insulation)
» Reflects mechanistic variations in degradation mechanism

 Elevated temp aging could not predict low temp degradation

350 T | | T

22°C at 200 Gy/h . . .
-eoccataizcyh 1 | © Radiation + thermal aging

« Oxidative conditions,
different to space but shows

300

250

S
S
3
? 200 \ o N .
° | N 60°C how unexpectedly materials
)
2 150 ~ 1 | may behave
S AN
E 100 N .
© N
£ s NS
>  Material A

0 200 400 600 800 1000

Dose [kGy]

M. Celina, K. Gillen, J. Wise, R. Clough, Radiat. Phys. Chem., 48 (1996) 613 S
M. Celina, K. Gillen, R. Clough, Poly. Deg. Stab., 61 (1998) 231 Laboratories



nomalous aging effects

nomalous aging effect in temperature-radiation environments
» Observed for various crosslinked polyolefin materials (cable insulation)

 Reflects mechanistic variations in degradation mechanism
 Elevated temp aging could not predict low temp degradation

e Competition between scission and crosslinking (only active at high T’s)
e Faster aging at lower temperature (only scission)

350

300

250

200
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Repair mechanism
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S
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e
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le 1: Accelerated aging anomaly with T

« DLO: Diffusion Limited Oxidation at elevated T
« Oxidation in material is faster than oxygen can diffuse into it

* Will lead to oxidation profile formation, heterogeneous degradation
» Oxidation rate @ (consumption) versus permeability P (supply)

» Accelerated aging tests can completely misrepresent real aging

coating layers

primer

o, uv

y-radiation

heat

No DLO present v

O,

O,

DLO conditions

Unaged coating or polymer

Uniform oxidation
throughout all layers
Ambient slow aging

Oxidation only partially
within top layer
Accelerated aging test

Measure or estimate @ and P prior to conducting any accelerated aging tests!

Mat Celina, Dept. 1811
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Ing degradation with °F markers leading to
enhanced NMR sensitivity
Alcohol functionalities are good indicators of oxidation

Use °F NMR to analyze derivatization product
Correlate intensity of NMR signal with extent of oxidation of polymer

|C|) h) O O
|
C C H C |l
A NPT N
e N ~
+ I c~™~ + HO
H o (|3 ~
Derivatization Agent Elastomeric Binder Derivatization Product Byproduct
Trifluoroacetic Anhydride (Hydroxy-Terminated Ester Trifluoroacetic Acid
(TFAA) Polybutadiene, HTPB)
Derivatization ||

Product : :
N~  Concentration of deriva-
Acld | ti7ation agent increases with

| byproduct i
i 7P degradation level

| |l : le
50 122;;\“ - \’ |L_ * Functionalities are good
8703 S6—= WV | indicators of oxidation

< O 14 = J‘_"‘"‘-ﬂ-—'«-“ " e e

I ' I ' I ' I ' I ' I

-70 -72 -74 -76 ppm Sandia
Roger Assink, Dept. 1811 ) _ i National
J.M.Skutnik, R.A.Assink, M.Celina, Polymer, 45 (2004) 7463 Laboratories



'

redictive aging study of elastomer

« Aim: Establish features of AO depletion
e Developed GC method
 Aim: Correlation of AO level with mechanical state

Binder has 1% AO stabilizer
hindered phenol 2246
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dictive aging study of elastomer

* Rapid decrease in AO at elevated T
e Continued presence of AO at lower T

AO depletion features depends on T Loss of mech. properties at diff. AO levels
0.8 0.8
¢ ;éogc @ 0.75¢lg, —ml—tlaﬁ (il elel—
\Y% ° /
0.6 - A 80°C 06 ] | 0.5 e/eo ///
_ B 65°C _ //
S ® 50°C S /
7y © /
< < /
(Q\] 04 7 (Q\] 04 —
(QV (Q\
o) o)
< < [
0.2 - 0.2 -
|
0.0 - - - v = 0.0 . . . .
1.0 0.8 0.6 0.4 0.2 0.0 120 100 80 60 40 20
Relative elongation (e/e,) Aging temperature [°C]

* No universal correlation between AO level and mechanical properties
e Aging and failure will occur at low T’s despite high levels of active AO

Sandia

: . : : : . National
Mat Celina, Dept. 1811 M. Celina, J. Skutnik Elliott, S. Winters, R. Assink, and L. Minier, Poly. Deg. Stab., 91 (2006) 1870 @ Lab:]ratm-ies



nsumption and Wear-out behavior

» Material failure at the end of the induction time (low AO level)

* How does AO consumption depend on T?

» \Wear out concept: Prior aging leaves signature in material

» Accelerated aging of aged samples, determine fractional changes

Consumption of antioxidant during aging Prior aging levels affect follow-up aging

unaged
material

k =k *[RH]/([AH], * (1-t/t,
[AO] = f (1) t [RH]/([AH], *( )

[AQ], =[AO], —k#t

[Antioxidant]

Heavily aged
Some aging

Unaged

Degradation variable (i.e. rate)

material
failure

Aging time Aging time

M. Celina, J. Skutnik Elliott, S. Winters, R. Assink, and L. Minier, Poly. Deg. Stab., 91 (2006) 1870 @ ﬁgt"igﬁal

Mat Celina, Dept. 1811 M. Celina, A. B. Trujillo, K. T. Gillen, L. Minier, Poly. Deg. Stab., 91 (2006) 2365 Laboratories



: Combined hydrolytic and thermal aging

 Polyurethane elastomer, lifetime estimation needed for re-qualification
 Property changes monitored via mechanical and T, NMR changes

» Unexpected rapid degradation at low temperatures
e Significant curvature, overestimation based on high T data

Material A aging time prediction
at 20% humidity

10000 4| © 90% modulus

@ Timeto 1/T2=1.7
O 1/T2 shift factors
® Timeto 1/T2=2.5
1000 -
=)
()
£
I_
100 -
10 ~

1000/T [K™]

Mat Celina, Dept. 1811
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Material B aging time prediction 3 100
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1000 A v
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xamples of infectious processes

Unripe avocado +
ripening apple

Ethylene gas ripens fb

Ripening fruit
releases
ethylene, which
causes OTHER
fruit to ripen

-~

Tin disease
causes
infected metal
to contaminate
other metal

\_

~

buttons degraded
Napoleon’s army left Russia

Mat Celina, Dept. 1811

with their pants down M
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» Tinned copper wire, copper is a well-
known catalyst
« Example of localized degradation

BPAN 95°C

HTPB 50°C

2180h 11600h 670h 3600h  12400h

We will all age rapidly while we tackle the science of aging @ Eat?ig&(l)_
oratories

Mat Celina, Dept. 1811




‘ A few conclusions

Lifetime predictions and performance assessments are challenging:
 Surface versus bulk conditions during accelerated aging

« Mechanistic variations with varying exposure conditions

» Heterogeneity aspects and physical dtrsibution of material changes

New techniques are available:
e Beam techniques, scanning microcopy, high resolution,
* but depends on what the characterization needs really are

What is the impact in terms of nano-technology:

* We need to know precisely know what we measure

* We need to know how it relates to the material properties

» Multiple techniques and combined approaches will provide increased

confidence and more reliable performance predictions

« Understand your materials, aging conditio
characterization technigues as best as possi
meaningful accelerated aging tests!

Mat Celina, Dept. 1811
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