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» August 2003 blackout affected 50 million
people in New York, Pennsylvania, Ohio,
Michigan, Vermont, Massachusetts,
Connecticut, New Jersey, Ontario.

» The time to recover from the blackout was as
long as 4 days at an estimated cost of $4-10 B

« Similar occurrences elsewhere: Brazil (1999),
France-Switzerland-Italy (2003)
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e grid’s vulnerability increases with its growing
complexity

Northeast blackout started with three
broken lines.

* Problem: the current standard
requires the system to be resilient
to only one failure, because higher
standards are not enforceable.

— Uncertainty inherent in many
renewable resources and the
increasing load on the system force
us to operate closer to the feasibility
boundary.

 Goal:

— detect vulnerabilities of the
power network

— Include contingency analysis
as a constraint in systems
planning

« Challenge: large-scale tri-level
combinatorial optimization

@ Sandia
National
Laboratories




Tri-level optimization

Medium and long term planning
15t Level infrastructure (e.g. capacity expansion, new
Adgmentation / transmission corridors, unit-
el commitment)

Loss of components
27 Level '”S;jjj;‘;cggf (e.g. maintenance, equipment
g failure, attacks)

Respond to loss of components
Infrastructure “ .
Operations (eg load Sheddlng)

Hierarchy of optimization problems with a modular struc:turneI
CBY {Gioratores




Power flow equations

I ' jI /)
B, VYV, sm®, -0)) Active power
V' voltage B i ViVJ- cos(0, -6 j-) Reactive power
O: phase angle

—TU U
B: susceptance 7 < Gi _@j <=

V, <V <V,
» Simplified model
— Fix voltages at 1.
— Work only on active power equations.

F(A4,0,p)=A"Bsin(40)- p=0
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Graphical representation of a blackout

Boundary of feasibility region shifts as
P, 4 / we add/remove lines
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Operating point corresponding to current load and
generation
< Blackout corresponds to infeasibility of power flow equations.

< Cascading is initiated by a significant disturbance to the system.

< Our focus 1s detecting initiating events and analyzing the network for

vulnerabilities. @ Sandia

California Institute of Technology kL

Laboratories



tingency analysis as a bi-level
optimization problem

Boundary of feasibility region shifts
as we add/remove lines

Operating point corresponding to current
load and generation

Y

>

P,

» Add integer (binary) line parameters, y, to identify broken lines
« Measure the blackout severity as the distance to feasibility boundary
* Bilevel-MINLP problem

— cut minimum number of lines so that

— the shortest distance to feasibility (i.e. severity) is at least as large as a
specified target

« Mangasarian Fromowitz constraint qualification conditions are satisfied for a
slightly modified system.
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S approach leads to a Mixed Integer

Nonlinear Program (MINLP)

min
Mz 0,1y 5151, 1y s s e
S.t.

a
F(AD(1-v),0,p+z)=0

minimize number of lines
cut

—n/2<AD(1-y)0 <m/2 _|
—eTZgZS

0<p,+z,<p, —

» feasible power flow

severity above threshold

p<p+z=<0 N

—€ 7\‘gj (M4 o M3)
( 0) (7», s~k
oF
A 0 + A" D(1-y)(1s — 1s) =0

wz, =0, w(p +z)=0

» feasible load shedding

, satisfy the KKT optimality

Mz, =0 ps(p, +2,)=0;
Ws(m/2+ AD(1-7v)0)=0;

He( /2= AD(1—7)B) = 0;
Hyseees g = 0

v € {0,1}
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Relaxation works on small problems

 Four candidate lines
identified.

 Two are sufficient to
cause a blackout.

* Failure of these lines
can cause a blackout
with 843 MW loss out
of a total load of
1655 MW).

e Solutions found
IEEE 30-Bus System using SNOPT.
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* 13 candidate lines are
identified

* Failure of these lines can
cause a blackout with 615 MW
loss of load (total load is 4200
MW)

» Better solutions exist
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Exploiting the combinatorial structure

Theoretical analysis of the bilevel
MINLP formulation shows:

— System is split into load-rich and
generation-rich regions.

— There is at least one saturated
line from the generation rich
region to the load rich region.

— Blackout size can be
approximated by the
generation/load mismatch and
capacity of edges in between.

Practical application: Exploit the combinatorial structure to find a loosely
coupled decomposition with a high generation/load mismatch
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ow Jacobian corresponds to the graph
Laplacian

* Key new observation: The Jacobian matrix, which
characterizes the feasibility boundary, has the
same structure as the Laplacian matrix in spectral
graph theory.

oF

——=J=4 BD((1-y)cos(40)4

/ Diagonal matrices with no\

Node-arc incidence  pegative weights
matrix

Node-arc incidence
matrix
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Can we work on a nonlinear model without

i ' ions?

 Practical application:
© Original Artis Exploit the combinatorial

Reproduction rights obtainable from
wwﬁv La rtanSt%ck Com Stru Ctu re
* Find a loosely coupled
decomposition with a high
; = generation/load mismatch

A

* It is not free lunch, itis a

wisbom || very good deal.
* Why does it work?
¥ « We are not proposing

There's no such thing as a free ﬁﬁ‘é"?ﬂ',rhf;fi‘{v i's"ﬁgf :E,I(\)stir?g.ly

lunch' — that'll be ten bucks."

* This is a flow problem.

* The goal of the load
shedding problem is to
make this model work.
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Network inhibition problem

k =0, max-flow= 11

k =1, max-tflow= 7
k =2, max-flow= 5

k =3, max-flow=1

« Cut min. number of lines so that max flow is below a specified bound.
« Shown to be NP-complete (Phillips 1991).

* The classical min-cut problem is a special version of network inhibition,
where max-flow is set to zero.

« Can be formulated as MILP with |V|+|E| binary variables.

Sandia
California Institute of Technology @ Pa%“u‘}‘;?.'mes



P formulation for network inhibition

®

{1 if e, is cut.

0 otherwise

=0Ap, #p,
otherwzse

p»-d; € {0,1}; s, €[0,1]

The integrality gap is small, leading to fast solutions.
C. Burch, R. Carr, S. Krumke, M. Marathe, C. Phillips and E. Sundberg, A decomposition-based approximation for netwoiSaija

Network Interdiction and Stochastic Integer PI‘OgT@g}ﬁfBﬁ,‘ Bﬁn@’ﬂ?ﬂ’f’éﬁoﬁe@ﬂwo@v 51-66. raabtl;)urg?(ljlies




This is a tight formulation
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* The integrality gap is provably small.

* Only one fractional variable after each solution.

 Experimented on a simplified model for Western states with
13,374 nodes and 16,520 lines, used PICO for solving the
MILPs.

Evep th_e IargeSt mStga ifognja Institute of Technology
hie .
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Take 2: Network inhibition problem

k =0, max-flow= 11

k =1, max-tflow= 7
k =2, max-flow= 5

k =3, max-flow=1

« Cut min. number of lines so that max flow is below a specified bound.
« Shown to be NP-complete (Phillips 1991).

* The classical min-cut problem is a special version of network inhibition,
where max-flow is set to zero.

« Can be formulated as MILP with |V|+|E| binary variables.
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Take 3: Inhibiting bisection problem

 Divide graph into two parts (bisection) so that
* load/generation mismatch 1s maximum.
e cutsize 1S minimuin.

imbalance= 6; cutsize=2
imbalance=10; cutsize=3
imbalance=11; cutsize=5 @ —
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» Constrained problem is NP-complete.
* Goal: minimize « (cutsize) - (1- o) imbalance
— ais the relative importance of cutsize compared to imbalance.
 Solution: use a standard min-cut algorithm.
* Min-cut gives an optimal solution to the linearized inhibiting bisection problem.
« Other versions are solvable

— Minimize cutsize/imbalance
C % . . Sandia
— Minimize capacity*(cutsize-1)/cutsize @ National
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Inhibiting bisection enables
fast analysis of large systems

Percent Imbalance

Load corridors

Initiating events

200 400 600
Cutsize

800

1000

» Experimented on a
Simplified model for
Western states with 13,374
nodes and 16,520 lines.

« Complete analysis using
Goldberg’s min-cut solver
takes minutes

« Solutions with small cutsize
can be used to detect
initiating events and groups
of vulnerabilities

» Solutions with medium
cutsize reveal load
corridors that can be used

to contain CascadlnE Sandia
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N-k survivable network design problem

* Improve a network efficiently to make it resilient to
contingencies

— Minimize the improvement cost such that the minimum
number of lines for the maximum flow to be below a
threshold B is above a threshold C.

» Solution approaches:

— A single problem with a separate set of constraints for each
contingency
« forms a giant problem
— Bender’s decomposition
* limits the memory requirements

» the number of subproblems is still very large, prohibitively
expensive for large N and k.

— Proposed Method: Delayed Contingency Generation
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Delayed contingency generation

 Outline of the algorithm

— Solve a restricted master
problem to identify candidate
lines to add.

— Solve the network inhibition
problem

omvavesiexn  — |f we cannot break the network,
current solution is optimal

— If not, add a constraint to the
(ADIIDNIil'?EI;I\'/\I((I)ONTINGENCY) maSter prObIem for the
identified vulnerability.
« Efficient solution of the
interdiction problem is the

key enabler.
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Initial results show scalability

IEEE Test N # of possible
Systems contingencies
30 82 82 0 0 0
118 358 358 20 4 4
179 444 444 33 11 19
30 123 >7K 81,722 1
118 537 >140K X 41
179 666 >200K
30 164 >700K
118 716 >60M
179 888 >116M
30 205 >72M
118 895 >26B
179 1110 >63B

EF (sec.) CPA (sec.) DCG (sec.)

AP BHAIW W WNDNDNEFRRER AR

Using Cplex to solve MILPs
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a small subset of potential contingencies
are considered.

No. of
contingencies
evaluated
82 0 0 3
358 4 1 17
444 19 10 51
>7K 1 0 15
>140K 41 26 12 58
>200K 174 50
>700K 9 5 2 43
>60M 398 25 303 70
>116M 653 21 193 439
>72M 67 7 23 37
>26B 2,708 399 1,698 612
>63B 11,999 4,939 1,822 5,237

IEEE Test N K No. of Total MP NIP
Systems contingencies time time time time

30
118
179

30
118
179

30
118
179

30
118
179

AP PAIW W WNDNNRERPRERPE
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Cost analysis
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Cost of perfectness
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by ~50% if 1% loss of load is acceptable
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Benefits of humbleness
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Uncertainties of renewables pose
a crucial challenge for grid operations

 Most renewable resources cannot be
controlled and involve significant
uncertainties.

* High penetration of renewables lead to
a significant change in operations due
to uncertainty.

 Storage technologies are not adequate
enough, yet.

« Operations require decision making
under uncertainty.
— Stochastic optimization is essential.

— Better models for handling uncertainty
are needed.

Source: http://saferenvironment.wordpress.com Full link

Sandia

Source: http://www.thesierraleonetelegraph.com/?p=5393 ) _ National
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http://saferenvironment.wordpress.com/2008/11/03/wind-energy-renewable
http://saferenvironment.wordpress.com/2008/11/03/wind-energy-renewable-energy-harnesses-natural-wind-power-%E2%80%93-effective-answer-for-emission-problem-towards-cleaner-safer-and-greener-environment/
http://saferenvironment.wordpress.com

perational problems require stochastic
optimization

« Sample Problem: Unit Commitment
« Fundamental problem in operations

Prediction Setup costs  * Two stage problem

of demand g — Decide on the state of big and slow
generators under a prediction of
demand/ renewables

— Operate on a realization of

, uncertainties to minimize generation
Generation
Realirat - costs
calization
of demand > « Standard approach Monte Carlo

Z Sampling
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Efficient Model for Uncertainty:
Polynomial Chaos Expansion

* Error for Monte Carlo
Var(f)/sqrt(S)

« Accurate estimations render optimization
problems impractical.

* Proposed Solution: Polynomial chaos
expansion

— Commonly used for uncertainty
quantification in CSE applications

— Core idea: preprocess the random variables
- - — to build a surrogate that represents random
No. of samples variables compactly

Thiam and DeMarco: “Simply put, when * Promising Initial results:

uncertainty is credibly accounted for such — Currently working on adding this to the
methods yze.ld tvolutzons fo.r economic benefit optimization loop

of a transmission expansion in which the
“error bars” are often larger than the
nominal predicted benefit.”
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Concluding remarks

« Optimization problems with contingency constraints lie at the heart of
many problems in power systems operations and planning.

* Recent progress in contingency analysis has paved the way for
higher objectives.

— Vulnerability analysis of a power system can be studied as bi-level MINLP problem.

— Special structure of a feasible solution to our MINLP formulation can be exploited for a
simpler approach for vulnerability detection.

Our combinatorial techniques can analyze vulnerabilities of large systems in a short
amount of time.
* Delayed contingency generation approach shows promising results
for N-k contingency constrained network improvement problem.
« Current work
— Improve current results
— Use DC power flow
— Apply the same approach to unit-commitment

Sandia
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Breakdown of runtimes

Test No. poss.  No. eval Total RMP
Systems scen. scen. time time

1 82 3 0
358 17 -
4 51 19
> TK 15 1
> 140K 58 -
> 200K 158 174
> 700K 43 9
> 60M 128 398 25
> 116 M 284 653 21
> T2M 156 67 7
> 26B 359 2708 399
12 > 638 899 11999 4939

Experiments on IEEE-30, K=1 @ o
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Alternative Formulation

Current solution

Optimality
Disruption
scenario

NO.
Optimal
solution

* Outline of the algorithm

— Solve a restricted master problem to identify candidate lines to
add.

— Solve the network inhibition problem
— If we cannot break the network, current solution is optimal
— If not, add a constraint to the master problem for the identified
vulnerability.
« Efficient solution of the interdiction problem is the key
enabler.
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N-k survivable network design

 How do we improve a network COST
effectively to make it resilient to contingencies?
 Itis a tri-level discrete optimization problem

— Minimize the improvement cost such that the minimum
number of lines for the maximum flow to be below a
threshold B is above a threshold C.

* We can
— build on our work on network interdiction
— rely on the reasonable resilience of the existing network.

 The same paradigm can be applied to various other
optimization problems in power systems.
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Take home lessons

All models are wrong,; some are useful.
George E.P. Box

Graph models are useful, because

* they have the flexibility to model a variety of problems
* we have the ability to solve associated problems.

* That your problem involves a graph does not imply graph
algorithms will provide a solution.

* That you cannot see a graph problem immediately does not
mean it does not exist.
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Vulnerability analysis as a
combinatorial problem

Given a graph G=(V,E) with weights on its vertices
e positive for generation,
 negative for loads,

find a partition of V into two loosely connected
regions with a significant load / generation mismatch.
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Concluding remarks

» Graph models are useful!

 That your problem involves a graph does not imply graph
algorithms will provide a solution.

« That you cannot see a graph theoretical problem immediately
does not mean it does not exist

 Vulnerability analysis of a power system can be studied as bi-
level MINLP problem.

» Special structure of a feasible solution to our MINLP formulation
can be exploited for a simpler approach for vulnerability
detection.

« Our combinatorial techniques can analyze vulnerabilities of
large systems in a short amount of time.
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Future work

» Study the gap between the combinatorial model and the
nonlinear flow model

— quantify the gap
— find better approximations
— understand its effect on dynamics
* Include vulnerability analysis as a constraint in decision making
— daily operations unit commitment
— system upgrade, maintenance scheduling

« Surrogates challenge:

— We do not need a power flow model, we need a certificate that a
solution exists.

» Generalizations of the inhibiting bisection problem

* New project starting in FY11 will look at long term planning for
the power grid.
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