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Power blackouts are a global problem

• August 2003 blackout affected 50 million 
people in New York, Pennsylvania, Ohio, 
Michigan, Vermont, Massachusetts, 
Connecticut, New Jersey, Ontario. 

• The time to recover from the blackout was as 
long as 4 days at an estimated cost of $4-10 B

• Similar occurrences elsewhere: Brazil (1999), 
France-Switzerland-Italy (2003) 
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The grid’s vulnerability increases with its growing 
complexity

• Problem: the current standard 
requires the system to be resilient 
to only one failure, because higher 
standards are not enforceable.

– Uncertainty inherent in many 
renewable resources and the 
increasing load on the system force 
us to operate closer to the feasibility 
boundary.   

• Goal:

– detect vulnerabilities of the 
power network

– Include contingency analysis 
as a constraint  in systems 
planning

• Challenge: large-scale tri-level 
combinatorial optimization 

Northeast blackout started with three
broken lines.



Tri-level optimization
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failure, attacks)

Respond to loss of components 
(e.g. load shedding)

Hierarchy of optimization problems with a modular structureHierarchy of optimization problems with a modular structure



Power flow equations

• Simplified model

– Fix voltages at 1. 

– Work only on active power equations. 

Active power
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(Vi,i) (V j , j )

BijViV j cos(i  j ) Reactive power
V: voltage

: phase angle

B: susceptance

F(A,, p)  AT Bsin(A)  p  0



Graphical representation of a blackout

Operating point corresponding to current load and 
generation

P1

P2

Boundary of feasibility region shifts as 
we add/remove lines

 Blackout corresponds to infeasibility of power flow equations. 

 Cascading is initiated by a significant disturbance to the system. 

 Our focus is detecting initiating events and analyzing the network for 
vulnerabilities. 
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Contingency analysis as a bi-level 
optimization problem

• Add integer (binary) line parameters, , to identify broken lines

• Measure the blackout severity as the distance to  feasibility boundary

• Bilevel-MINLP problem

– cut minimum number of lines so that 

– the shortest distance to feasibility (i.e. severity) is at least as large as a 
specified target

• Mangasarian Fromowitz constraint qualification conditions are satisfied for a 
slightly modified  system. 

P2

P1



z

Boundary of feasibility region shifts 
as we add/remove lines

Operating point corresponding to current 
load and generation
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This approach leads to a Mixed Integer 
Nonlinear Program (MINLP)

min
,z, ,1 ,2 ,3 ,4 ,5,6

|  |

s.t. F(AD(1 ),, p z)  0
 /2  AD(1 )   /2
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







  0

T F


 AT D(1 )(6  5)  0

1zl  0; 2( pl  zl )  0
4zg  0; 3( pg  zg )  0;

5( /2  AD(1 ))  0;

6( /2  AD(1 ))  0;
1,...,6  0
  {0,1}

feasible power flow

feasible load shedding

severity above threshold

minimize number of lines 
cut

satisfy the KKT optimality
conditions
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Relaxation works on small problems
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IEEE 30-Bus System

• Four candidate lines 
identified.

• Two are sufficient to 
cause a blackout.

• Failure of these lines 
can cause a blackout 
with 843 MW loss out 
of a total load of 
1655 MW).

• Solutions found 
using SNOPT.
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…. but  not on larger problems

IEEE 118 Bus System

• 13 candidate lines are 
identified

• Failure of these lines can 
cause a blackout with 615 MW 
loss of load (total load is 4200 
MW)

• Better solutions exist



Exploiting the combinatorial structure

Theoretical analysis of the bilevel
MINLP formulation shows: 

– System is split into load-rich and 
generation-rich regions.

– There is at least one saturated 
line from the generation rich 
region to the load rich region.

– Blackout size can be 
approximated by the 
generation/load mismatch and
capacity of edges in between.

2
8

2 1

4 3

5 7 6

8

27

25

26

29 30

2422 21

10
20

119

23

19

18

1312

16 1
7

14

15

Practical application: Exploit the combinatorial structure to find a loosely 
coupled decomposition with a high generation/load mismatch
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Power-flow Jacobian corresponds to the graph 
Laplacian

•Key new observation: The Jacobian matrix, which 
characterizes the feasibility boundary, has the 
same structure as the Laplacian matrix in spectral 
graph  theory. 

F


 J  AT BD((1 )cos(A)A

Node-arc incidence 
matrix

Node-arc incidence 
matrix

Diagonal matrices with  non-
negative weights
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Can we work on a nonlinear model without 
solving nonlinear equations? 

• Practical application: 
Exploit the combinatorial 
structure

• Find a loosely coupled 
decomposition with a high 
generation/load mismatch

• It is not free lunch,  it is a 
very good deal. 

• Why does it work? 
• We are not proposing  

power flow model, we only 
find why it is not flowing. 

• This is a flow problem.
• The goal of the load 

shedding problem is to 
make this model work. 
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Network inhibition problem

• Cut min. number of lines so that max flow is below a specified bound. 

• Shown to be NP-complete (Phillips 1991). 

• The classical min-cut problem is a special version of network inhibition, 
where max-flow is set to zero.

• Can be formulated as MILP with |V|+|E| binary variables. 

k =3, max-flow=1
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MILP formulation for network inhibition

min dij

s.t. (vi,v j ) E
pi  p j  sij  dij  0

pi  p j  sij  dij  0

cijsij

(vi ,v j )E

  B

ps  0; pt 1
pi,dij  {0,1}; sij  [0,1]

dij 
1 if eij is cut.

0 otherwise





pi 
0 v i  S
1 v i  T




sij 
1 dij  0 pi  p j

0 otherwise





The integrality gap is small, leading to fast solutions. 
C. Burch, R. Carr, S. Krumke, M. Marathe, C. Phillips and E. Sundberg, A decomposition-based approximation for network inhibition, 
Network Interdiction and Stochastic Integer Programming, D.L. Woodruff, eds., (2003), pp. 51–66.

S
Pi=0

T
Pi=1

sij  dij 1

sij  dij 1

sij  dij 1
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This is a tight formulation

• The  integrality gap is provably small. 

• Only one fractional variable after each solution. 

• Experimented on a simplified model for Western states with 
13,374 nodes and 16,520 lines, used PICO for solving the 
MILPs. 

• Even the largest instances can be solved in small time, 
motivating us for  more higher  objectives.
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Take 2: Network inhibition problem

• Cut min. number of lines so that max flow is below a specified bound. 

• Shown to be NP-complete (Phillips 1991). 

• The classical min-cut problem is a special version of network inhibition, 
where max-flow is set to zero.

• Can be formulated as MILP with |V|+|E| binary variables. 

k =3, max-flow=1
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Take 3: Inhibiting bisection problem

• Divide graph into two parts (bisection) so that 
• load/generation mismatch is maximum.
• cutsize is minimum.

imbalance=10; cutsize=3
imbalance=11; cutsize=5

imbalance=  6; cutsize=2
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Solving the inhibiting cut problem

• Constrained problem is NP-complete. 

• Goal: minimize    (cutsize) - (1- ) imbalance

–  is the relative importance of cutsize compared to imbalance.

• Solution: use a standard min-cut algorithm.

• Min-cut gives an optimal solution to the linearized inhibiting bisection problem.

• Other versions are solvable

– Minimize cutsize/imbalance

– Minimize  capacity*(cutsize-1)/cutsize 
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Inhibiting bisection enables 
fast analysis of large systems

• Experimented on a 
Simplified model for 
Western states with 13,374 
nodes and 16,520 lines.

• Complete analysis using 
Goldberg’s min-cut solver 
takes minutes

• Solutions with small cutsize
can be used to detect 
initiating events and groups 
of  vulnerabilities

• Solutions with medium 
cutsize reveal load 
corridors that can be used 
to contain  cascading. 

Initiating events

Load corridors



N-k survivable network design  problem

• Improve a network efficiently to make it resilient to 
contingencies 
– Minimize the improvement cost such that the minimum

number of lines for the maximum flow to be below a 
threshold B is above a threshold C.

• Solution approaches:
– A single problem with a separate set of constraints for each 

contingency
• forms a giant problem 

– Bender’s decomposition
• limits the memory requirements
• the number of subproblems is still very large, prohibitively 

expensive for large N and k.

– Proposed Method: Delayed Contingency Generation  
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Restricted
Master Problem

Sub-Problem k

Sub-Problem …

Sub-Problem 1

xt

ORACLE?
OPTIMAL YES (EXIT)

OPTIMAL NO
(ADD NEW CONTINGENCY)

O
p

tc
u

t(
s)

xt
1

2

3

Delayed contingency generation

• Outline of the algorithm
– Solve a restricted master 

problem to identify candidate 
lines to add.

– Solve the network inhibition 
problem

– If we cannot break the network, 
current solution is optimal

– If not, add a constraint to the 
master problem  for the 
identified vulnerability.   

• Efficient solution of the 
interdiction problem is the 
key enabler. 
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Initial results show scalability

Times are based on using Cplex as the MILP solver.

Using Cplex to solve MILPs
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Only a small subset of potential contingencies 
are  considered.
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Cost analysis 
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Cost of perfectness
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Infrastructure investment cost can be reduced
by ~50% if 1% loss of load is acceptable
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Benefits of humbleness 
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Loss of load < 4% at K=4

Loss of load < 2% at K=3
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With a budget of $6 Billion …
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Uncertainties of renewables pose
a crucial challenge for grid operations

Source: http://saferenvironment.wordpress.com Full link

Source: http://www.thesierraleonetelegraph.com/?p=5393
California Institute of Technology

• Most renewable resources  cannot be 
controlled and involve significant 
uncertainties.

• High penetration of renewables lead to 
a significant change in operations due 
to uncertainty. 

• Storage technologies are not adequate 
enough, yet.

• Operations require decision making 
under uncertainty. 

– Stochastic optimization is essential. 

– Better models for handling uncertainty 
are needed. 

http://saferenvironment.wordpress.com/2008/11/03/wind-energy-renewable
http://saferenvironment.wordpress.com/2008/11/03/wind-energy-renewable-energy-harnesses-natural-wind-power-%E2%80%93-effective-answer-for-emission-problem-towards-cleaner-safer-and-greener-environment/
http://saferenvironment.wordpress.com


Operational problems require stochastic 
optimization

• Sample Problem: Unit Commitment

• Fundamental problem in operations

• Two stage problem

– Decide on the state of big and slow 
generators  under a  prediction of 
demand/ renewables

– Operate on a realization of 
uncertainties to minimize generation 
costs

• Standard approach Monte Carlo 
Sampling

California Institute of Technology

Unit
commitment

Realization
of demand

Prediction
of demand

Economic
dispatch

Setup costs

Generation 
cost



Efficient Model for Uncertainty:
Polynomial Chaos Expansion 

• Error for Monte Carlo
Var(f)/sqrt(S)

• Accurate estimations  render optimization 
problems impractical.

• Proposed  Solution: Polynomial chaos 
expansion

– Commonly used for uncertainty 
quantification  in CSE applications

– Core idea: preprocess the random variables 
to build a surrogate that represents random 
variables compactly

• Promising Initial results: 

– Currently working on adding this to the 
optimization loop

California Institute of Technology

Thiam and DeMarco: “Simply put, when 
uncertainty is credibly accounted for such 
methods yield solutions for economic benefit 
of a transmission  expansion in which the 
“error bars” are often larger than  the 
nominal predicted benefit.” 



Concluding remarks

• Optimization problems with contingency constraints lie at the heart of 
many problems in power systems operations and planning. 

• Recent progress in contingency analysis has paved the way for 
higher objectives.   

– Vulnerability analysis of a power system can be studied as bi-level MINLP problem. 

– Special structure of a feasible solution to our MINLP formulation can be exploited for a 
simpler approach for vulnerability detection.

– Our combinatorial techniques can analyze vulnerabilities  of large systems in a short 
amount of time.

• Delayed contingency generation approach shows promising results  
for N-k  contingency constrained network improvement problem.

• Current work
– Improve current results

– Use DC power flow

– Apply the same approach to unit-commitment  
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• Questions? 
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Breakdown of runtimes

Experiments on IEEE-30,  K=1 
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Alternative Formulation

• Outline of the algorithm
– Solve a restricted master problem to identify candidate lines to 

add.
– Solve the network inhibition problem
– If we cannot break the network, current solution is optimal
– If not, add a constraint to the master problem  for the identified 

vulnerability.   

• Efficient solution of the interdiction problem is the key 
enabler. 

Restricted Master 
Problem

Is there a  disruption 
within the budget? 

Disruption 
Scenario list

Current solution

NO. 
Optimal 
solution

Optimality 
Cuts YES.

Disruption 
scenario
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N-k survivable network design

• How do we improve a network                            cost 
effectively to make it resilient to contingencies? 

• It is a tri-level discrete optimization problem
– Minimize the  improvement cost such that the minimum

number of lines for the maximum flow to be below a 
threshold B is above a threshold C.

• We can
– build on our work on network interdiction

– rely on the reasonable resilience of the existing network.

• The same paradigm  can be applied to various  other 
optimization problems in power systems.   
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Take home lessons

All models are wrong; some are useful.                                                       
George E.P. Box 

Graph models are useful, because 

• they have the flexibility to model a variety of problems
• we have the ability to solve associated problems. 

• That your problem involves a graph does not imply graph 
algorithms will provide a solution. 

• That you cannot see a graph problem immediately does not 
mean  it does not exist.
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Vulnerability analysis as a
combinatorial problem

Given a graph G=(V,E) with weights on its vertices
• positive for generation,
• negative for loads,

find a partition of V into two loosely connected 
regions with a significant load / generation mismatch.
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Concluding remarks

• Graph models are useful!

• That your problem involves a graph does not imply graph 
algorithms will provide a solution. 

• That you cannot see a graph theoretical problem immediately  
does not mean  it does not exist

• Vulnerability analysis of a power system can be studied as bi-
level MINLP problem. 

• Special structure of a feasible solution to our MINLP formulation 
can be exploited for a simpler approach for vulnerability 
detection.

• Our combinatorial techniques can analyze vulnerabilities  of 
large systems in a short amount of time.
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Future work

• Study the gap between the combinatorial model and the 
nonlinear flow model

– quantify the gap

– find better approximations

– understand its effect on dynamics

• Include vulnerability analysis as a constraint in decision making 

– daily operations unit commitment

– system upgrade, maintenance scheduling 

• Surrogates challenge:
– We do not need a power flow model, we need a certificate that a 

solution exists. 

• Generalizations of the inhibiting bisection problem 

• New project starting in FY11 will look at long term planning  for 
the power grid. 

California Institute of Technology


