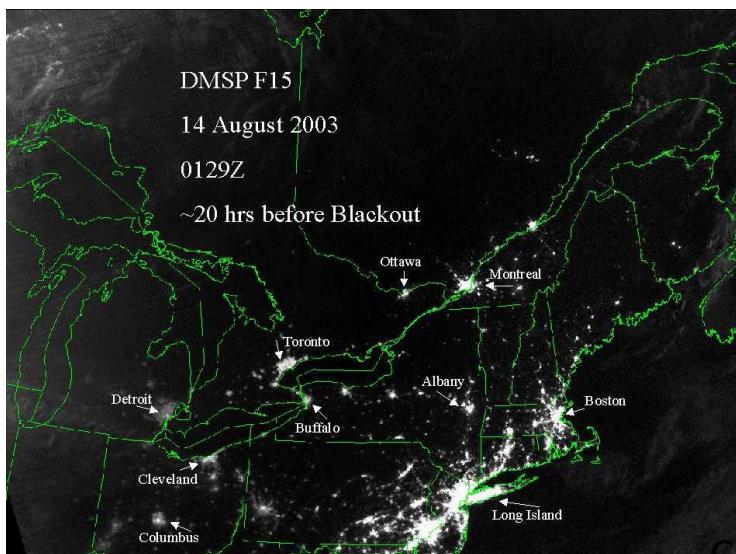
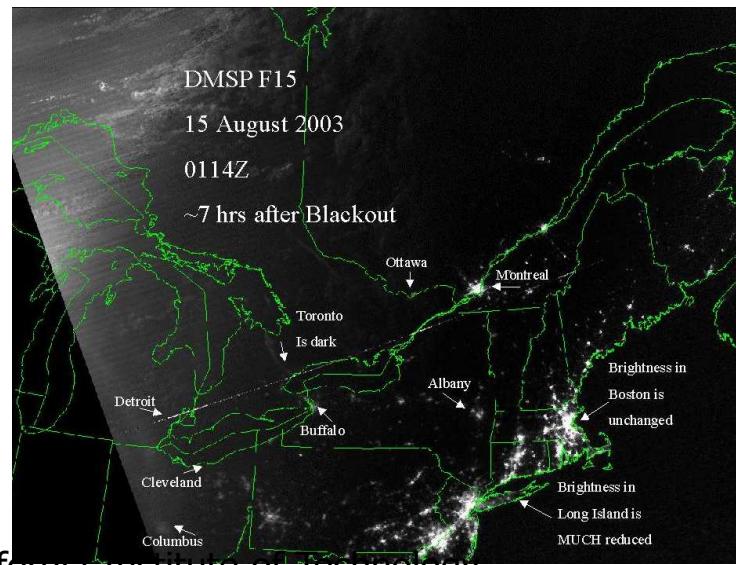


Resiliency of the Power Grid

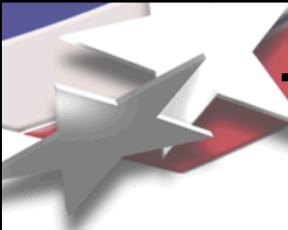
Ali Pinar
Sandia National Laboratories

Power blackouts are a global problem

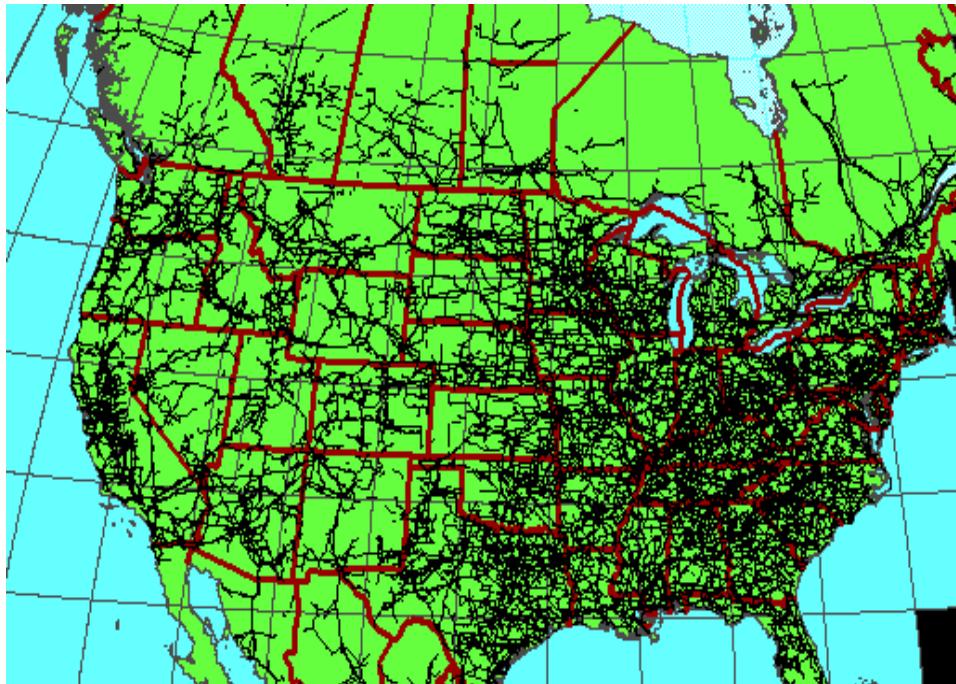
- August 2003 blackout affected 50 million people in New York, Pennsylvania, Ohio, Michigan, Vermont, Massachusetts, Connecticut, New Jersey, Ontario.
- The time to recover from the blackout was as long as 4 days at an estimated cost of \$4-10 B
- Similar occurrences elsewhere: Brazil (1999), France-Switzerland-Italy (2003)



California Institute of Technology



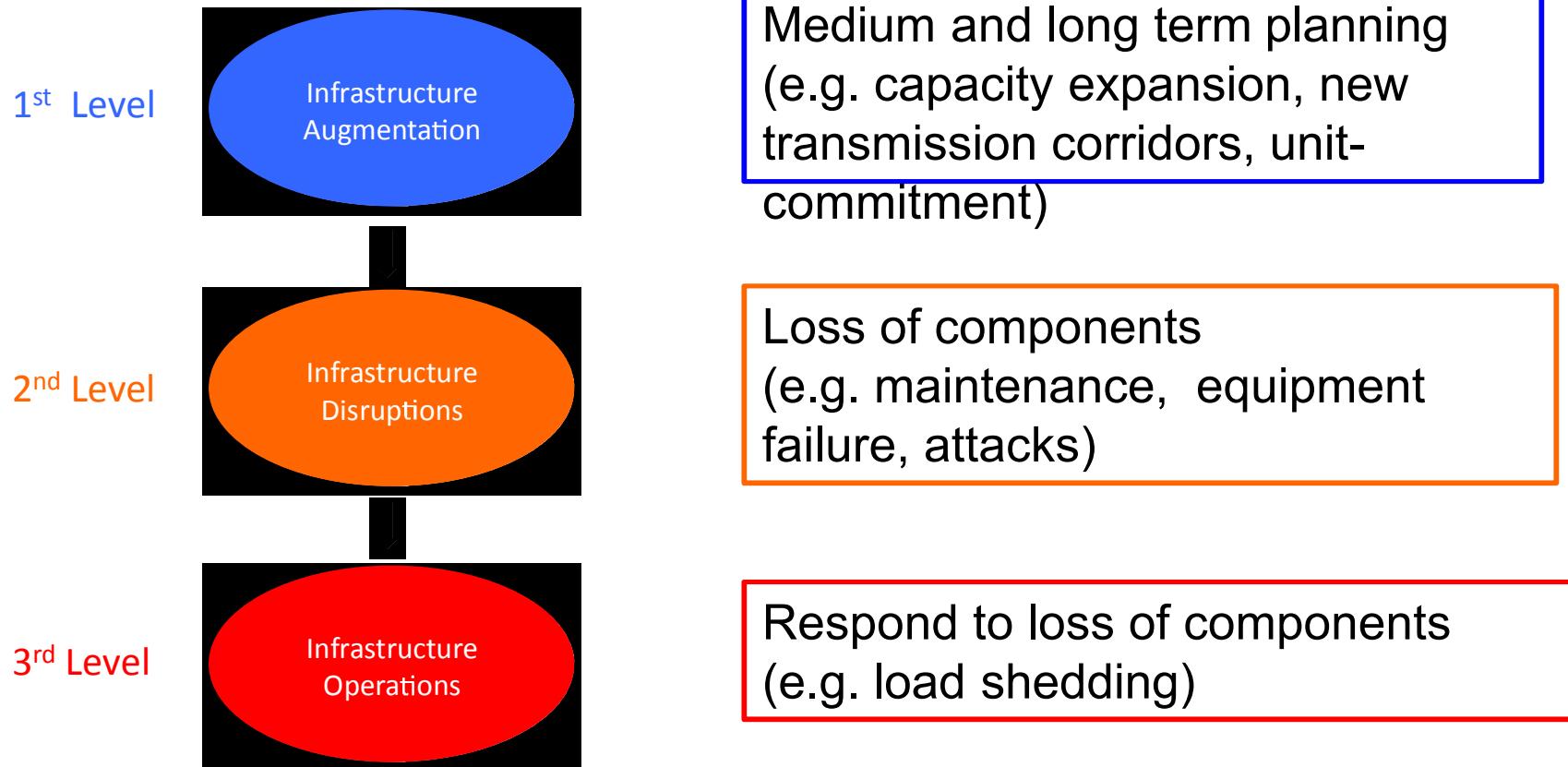
The grid's vulnerability increases with its growing complexity



Northeast blackout started with **three** broken lines.

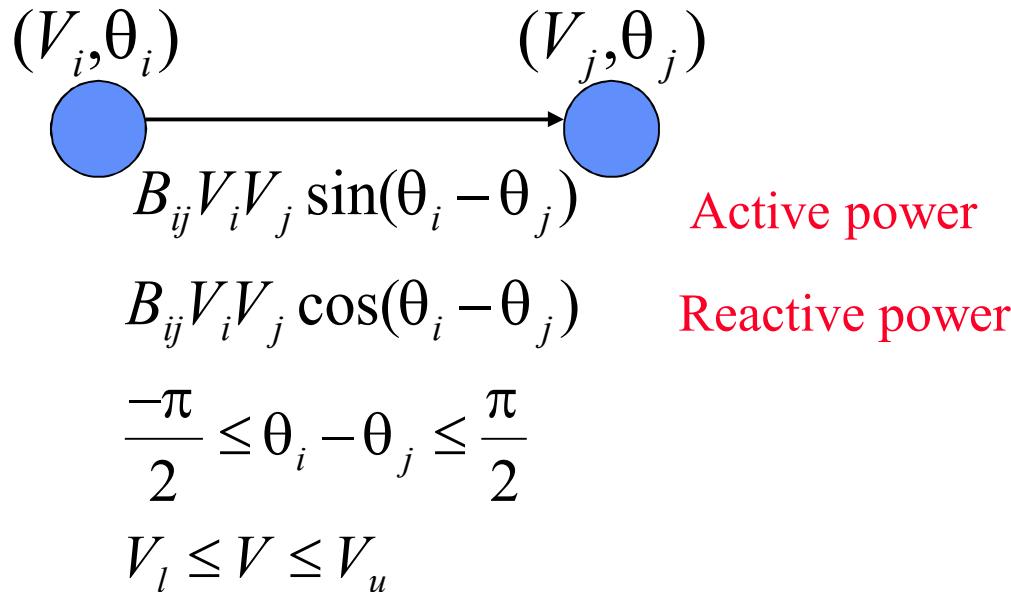
- **Problem:** the current standard requires the system to be resilient to only one failure, because higher standards are not enforceable.
 - Uncertainty inherent in many renewable resources and the increasing load on the system force us to operate closer to the feasibility boundary.
- **Goal:**
 - detect vulnerabilities of the power network
 - Include contingency analysis as a constraint in systems planning
- **Challenge:** large-scale tri-level combinatorial optimization

Tri-level optimization



Hierarchy of optimization problems with a modular structure

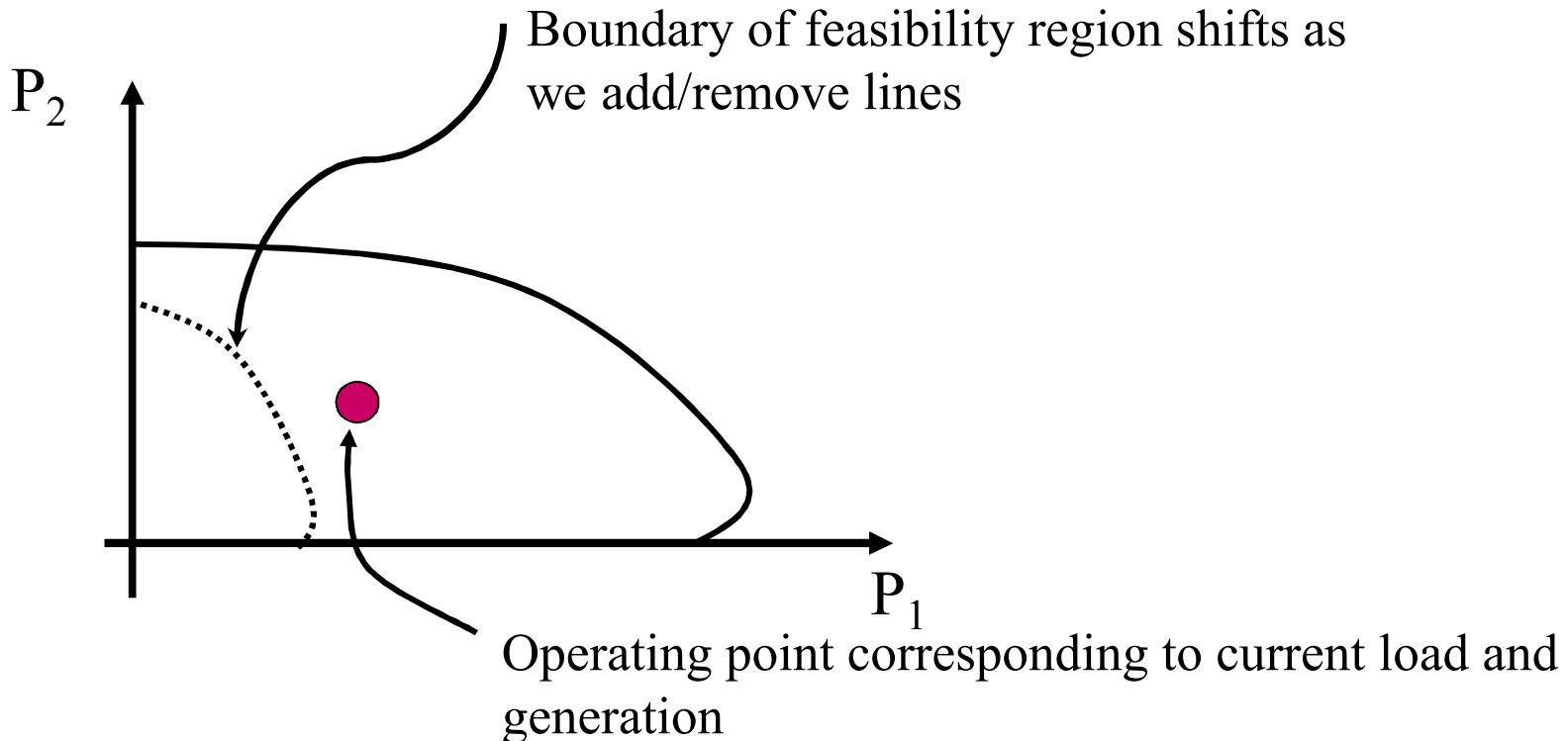
Power flow equations



- **Simplified model**
 - Fix voltages at 1.
 - Work only on active power equations.

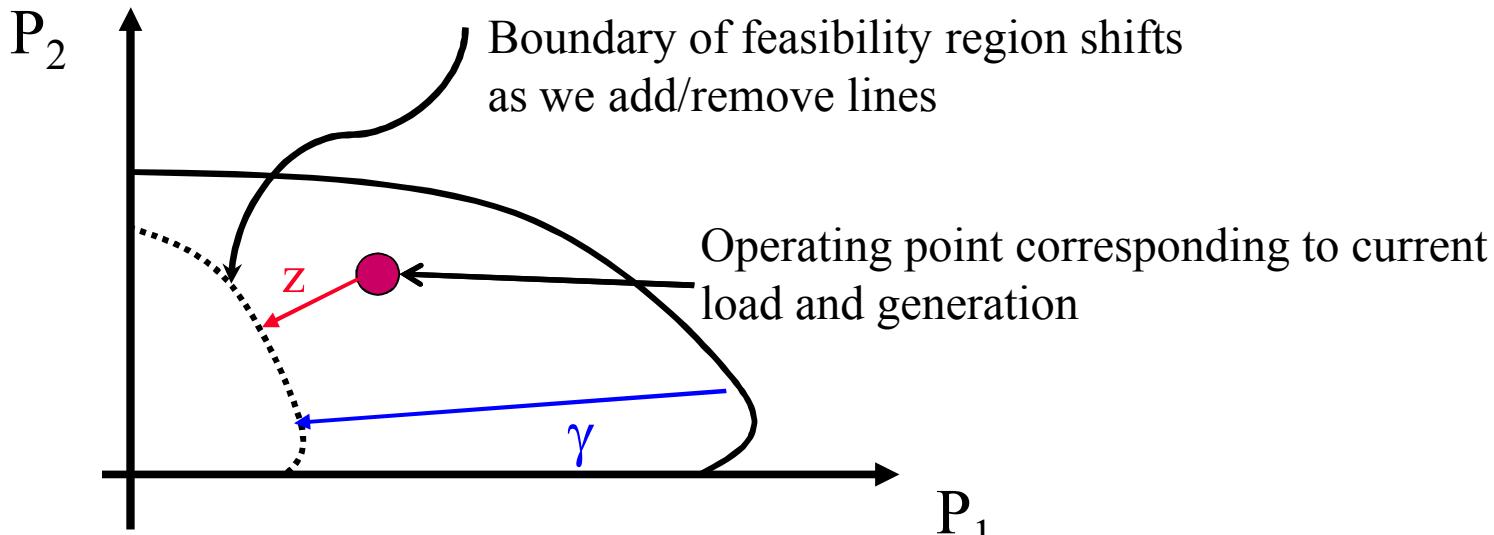
$$F(A, \theta, p) = A^T B \sin(A\theta) - p = 0$$

Graphical representation of a blackout



- ❖ Blackout corresponds to infeasibility of power flow equations.
- ❖ Cascading is initiated by a significant disturbance to the system.
- ❖ Our focus is detecting initiating events and analyzing the network for vulnerabilities.

Contingency analysis as a bi-level optimization problem



- Add integer (binary) line parameters, γ , to identify broken lines
- Measure the blackout severity as the distance to feasibility boundary
- Bilevel-MINLP problem
 - cut **minimum** number of lines so that
 - the **shortest** distance to feasibility (i.e. severity) is at least as large as a specified target
- Mangasarian Fromowitz constraint qualification conditions are satisfied for a slightly modified system.

This approach leads to a Mixed Integer Nonlinear Program (MINLP)

$$\min_{\lambda, z, \theta, \mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6} |\gamma|$$
 s.t.

$$F(AD(1-\gamma), \theta, p+z) = 0$$

$$-\pi/2 \leq AD(1-\gamma)\theta \leq \pi/2$$

$$-e^T z_g \geq S$$

$$0 \leq p_g + z_g \leq p_g$$

$$p_l \leq p_l + z_l \leq 0$$

$$\begin{pmatrix} -e \\ 0 \end{pmatrix} - \begin{pmatrix} \lambda_g \\ \lambda_l \end{pmatrix} + \begin{pmatrix} \mu_4 - \mu_3 \\ \mu_2 - \mu_1 \end{pmatrix} = 0$$

$$\lambda^T \frac{\partial F}{\partial \theta} + A^T D(1-\gamma)(\mu_6 - \mu_5) = 0$$

$$\mu_1 z_l = 0; \quad \mu_2 (p_l + z_l) = 0$$

$$\mu_4 z_g = 0; \quad \mu_3 (p_g + z_g) = 0;$$

$$\mu_5 (\pi/2 + AD(1-\gamma)\theta) = 0;$$

$$\mu_6 (\pi/2 - AD(1-\gamma)\theta) = 0;$$

$$\mu_1, \dots, \mu_6 \geq 0$$

$$\gamma \in \{0,1\}$$

minimize number of lines cut

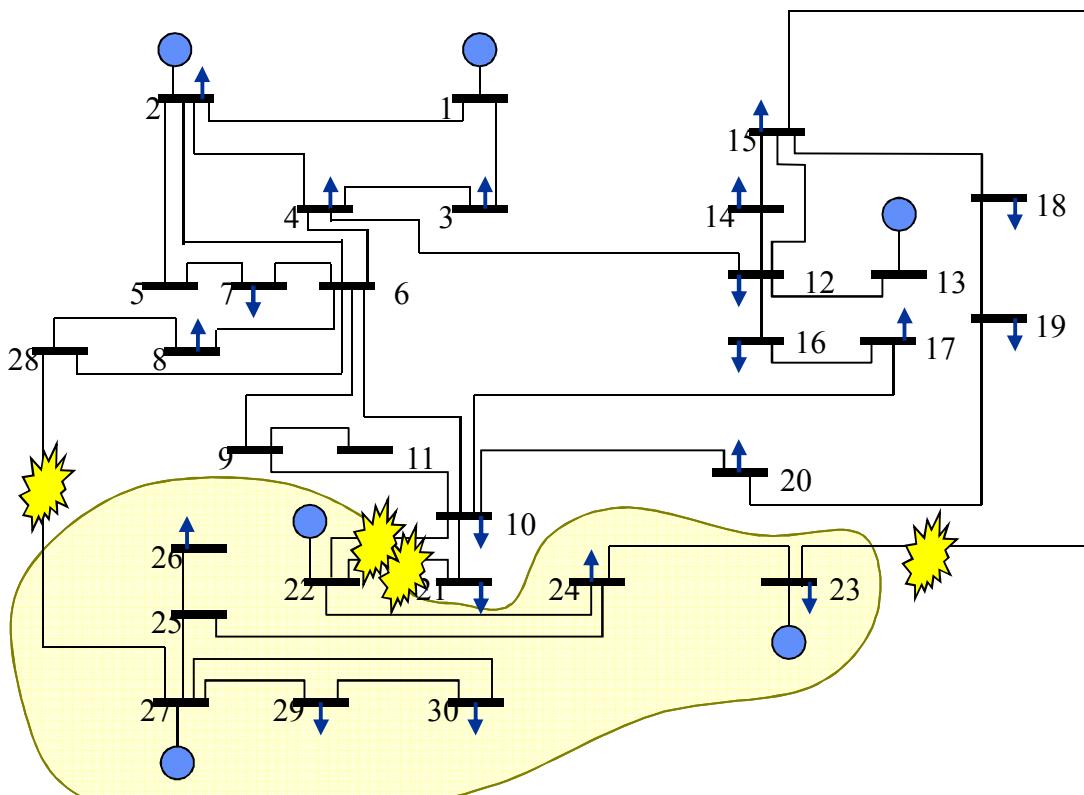
feasible power flow

severity above threshold

feasible load shedding

satisfy the KKT optimality conditions

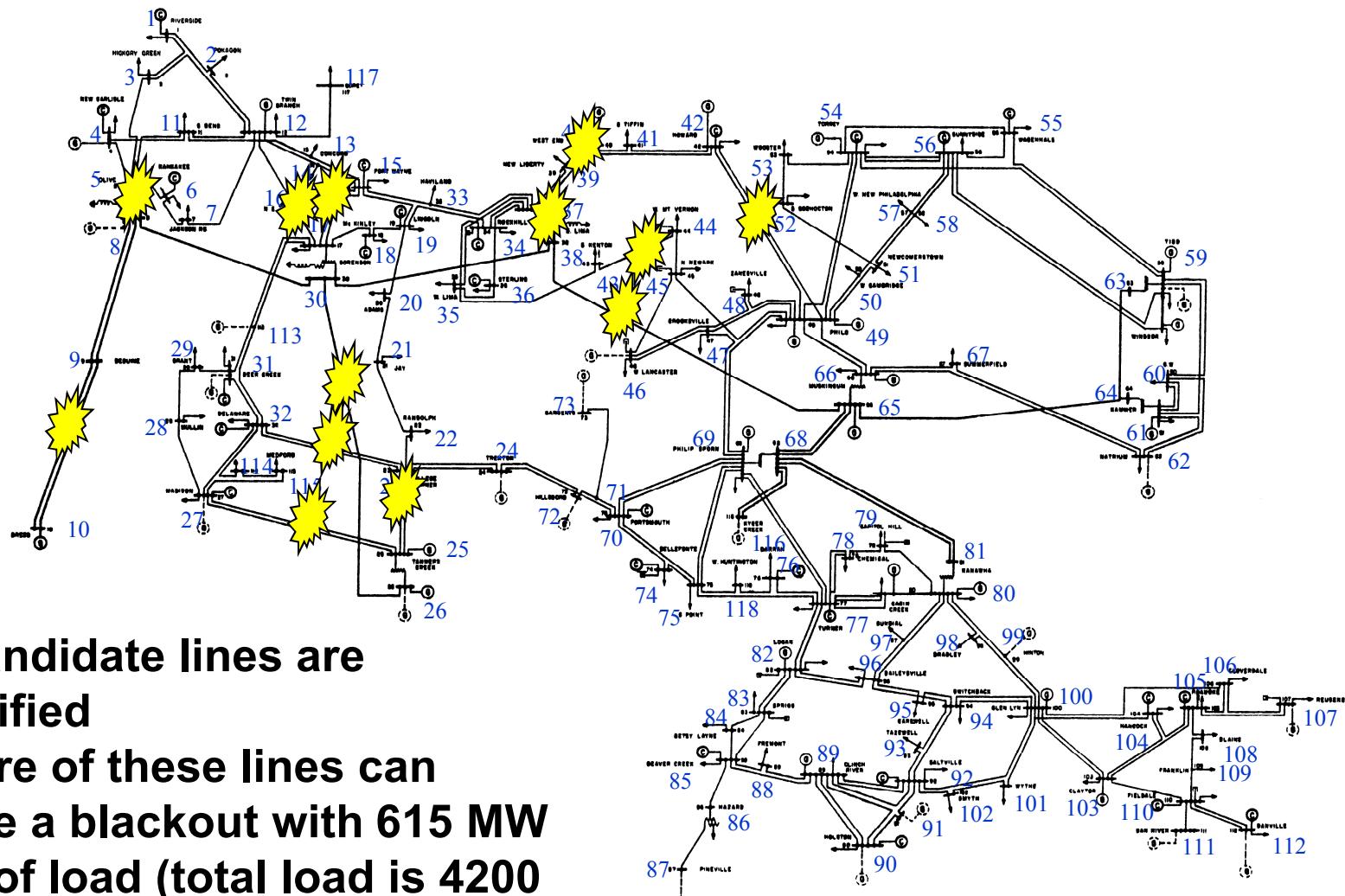
Relaxation works on small problems



IEEE 30-Bus System

- Four candidate lines identified.
- Two are sufficient to cause a blackout.
- Failure of these lines can cause a blackout with 843 MW loss out of a total load of 1655 MW).
- Solutions found using SNOPT.

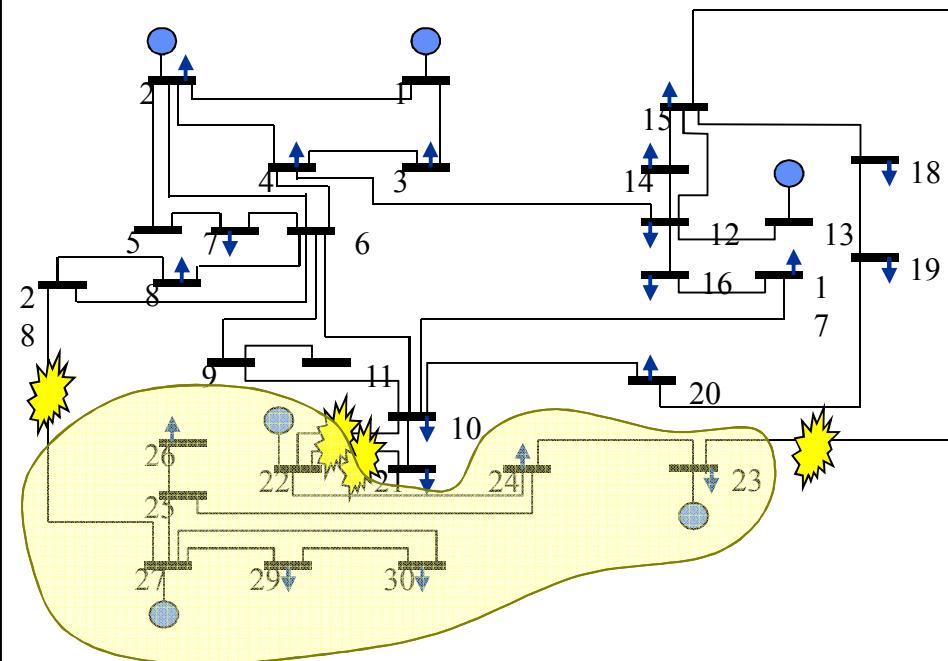
.... but not on larger problems



- 13 candidate lines are identified
- Failure of these lines can cause a blackout with 615 MW loss of load (total load is 4200 MW)
- Better solutions exist

IEEE 118 Bus System

Exploiting the combinatorial structure



Theoretical analysis of the bilevel MINLP formulation shows:

- System is split into load-rich and generation-rich regions.
- There is at least one saturated line from the generation rich region to the load rich region.
- Blackout size can be approximated by the generation/load mismatch and capacity of edges in between.

Practical application: Exploit the combinatorial structure to find a loosely coupled decomposition with a high generation/load mismatch

Power-flow Jacobian corresponds to the graph Laplacian

- Key new observation: *The Jacobian matrix, which characterizes the feasibility boundary, has the same structure as the Laplacian matrix in spectral graph theory.*

$$\frac{\partial F}{\partial \theta} = J = A^T \underbrace{BD((1-\gamma)\cos(A\theta)A)}_{\text{Diagonal matrices with non-negative weights}}$$

Node-arc incidence matrix

Diagonal matrices with non-negative weights

Node-arc incidence matrix

Can we work on a nonlinear model without ~~solving nonlinear equations?~~

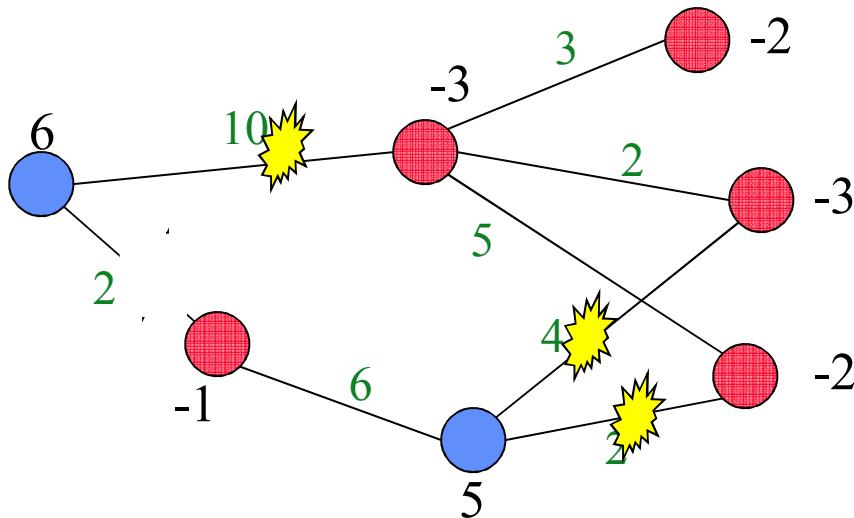
© Original Artist

Reproduction rights obtainable from
www.CartoonStock.com

"There's no such thing as a free lunch" — that'll be ten bucks."

- **Practical application: Exploit the combinatorial structure**
 - Find a loosely coupled decomposition with a high generation/load mismatch
- **It is not free lunch, it is a very good deal.**
- **Why does it work?**
 - We are not proposing power flow model, we only find why it is not flowing.
 - This is a flow problem.
 - The goal of the load shedding problem is to make this model work.

Network inhibition problem



$k=0$, max-flow= 11

$k=1$, max-flow= 7

$k=2$, max-flow= 5

$k=3$, max-flow=1

- Cut min. number of lines so that max flow is below a specified bound.
- Shown to be NP-complete (Phillips 1991).
- The classical min-cut problem is a special version of network inhibition, where max-flow is set to zero.
- Can be formulated as MILP with $|V|+|E|$ binary variables.

MILP formulation for network inhibition

The diagram shows a network node with two states: S (blue circle) and T (orange circle). A blue arrow points from a small blue circle to state S . A red arrow points from state S to state T . A red box encloses the node, with three red constraint arrows pointing outwards: one from the top to the right labeled $s_{ij} + d_{ij} \geq 1$, one from the bottom to the right labeled $s_{ij} + d_{ij} \geq 1$, and one from the left to the top labeled $s_{ij} + d_{ij} \geq 1$.

$$\begin{aligned}
 & \min \quad \sum d_{ij} \\
 & s.t. \quad \forall (v_i, v_j) \in E \quad p_i - p_j - s_{ij} - d_{ij} \leq 0 \\
 & \quad \quad \quad p_i - p_j + s_{ij} + d_{ij} \geq 0 \\
 & \quad \quad \quad \sum_{(v_i, v_j) \in E} c_{ij} s_{ij} \leq B \\
 & \quad \quad \quad p_s = 0; \quad p_t = 1 \\
 & \quad \quad \quad p_i, d_{ij} \in \{0,1\}; \quad s_{ij} \in [0,1]
 \end{aligned}$$

$$p_i = \begin{cases} 0 & v_i \in S \\ 1 & v_i \in T \end{cases} \quad d_{ij} = \begin{cases} 1 & \text{if } e_{ij} \text{ is cut.} \\ 0 & \text{otherwise} \end{cases}$$

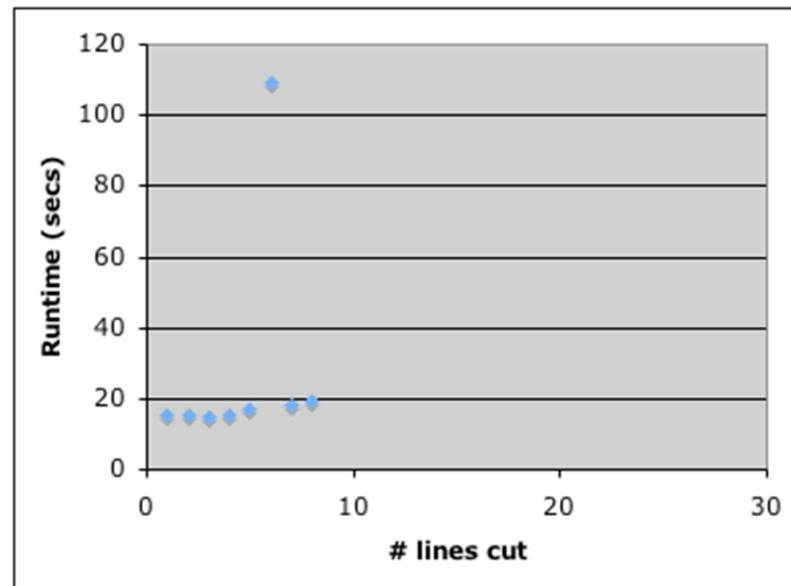
$$s_{ij} = \begin{cases} 1 & d_{ij} = 0 \wedge p_i \neq p_j \\ 0 & \text{otherwise} \end{cases}$$

The integrality gap is small, leading to fast solutions.

C. Burch, R. Carr, S. Krumke, M. Marathe, C. Phillips and E. Sundberg, A decomposition-based approximation for network inhibition, in: Network Interdiction and Stochastic Integer Programming, D.L. Woodruff, eds., (2003), pp. 51–66.

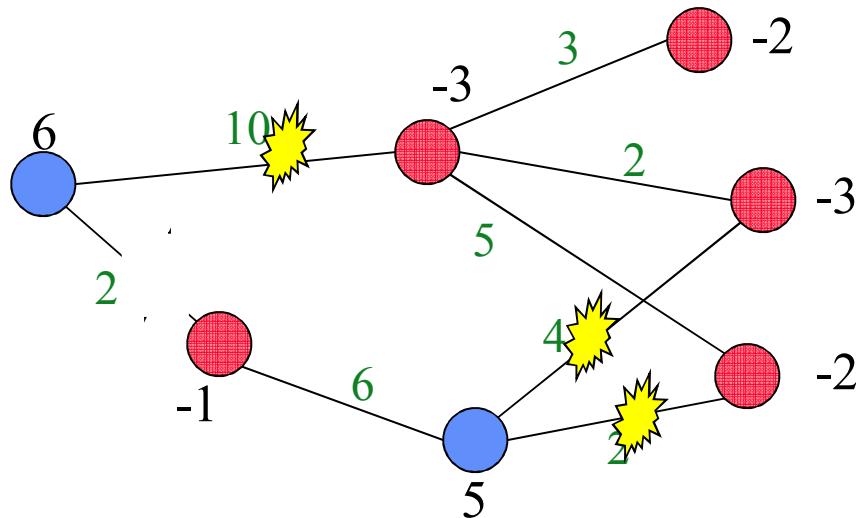
California Institute of Technology

This is a tight formulation



- The integrality gap is provably small.
- Only one fractional variable after each solution.
- Experimented on a simplified model for Western states with 13,374 nodes and 16,520 lines, used PICO for solving the MILPs.
- Even the largest instances can be solved in small time, motivating us for more higher objectives.

Take 2: Network inhibition problem



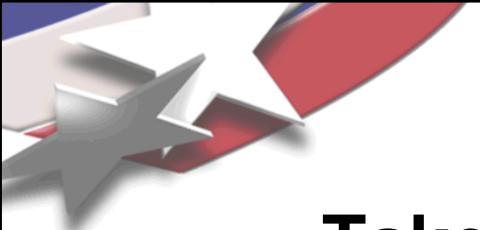
$k=0$, max-flow = 11

$k=1$, max-flow = 7

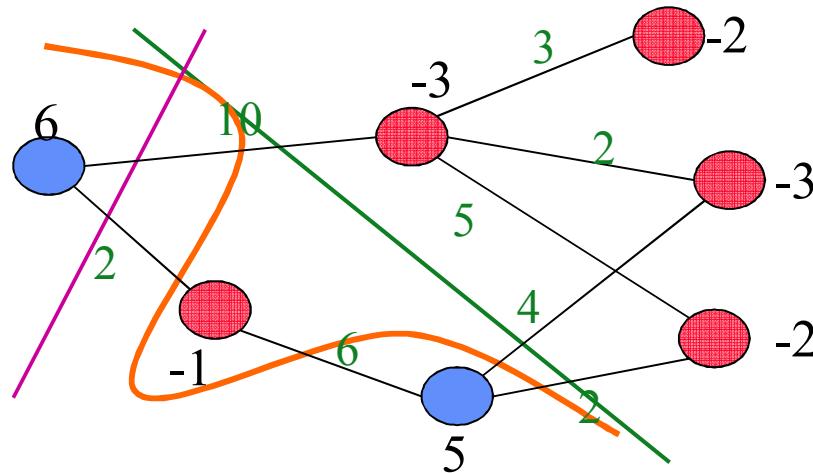
$k=2$, max-flow = 5

$k=3$, max-flow = 1

- Cut min. number of lines so that max flow is below a specified bound.
- Shown to be NP-complete (Phillips 1991).
- The classical min-cut problem is a special version of network inhibition, where max-flow is set to zero.
- Can be formulated as MILP with $|V|+|E|$ binary variables.



Take 3: Inhibiting bisection problem



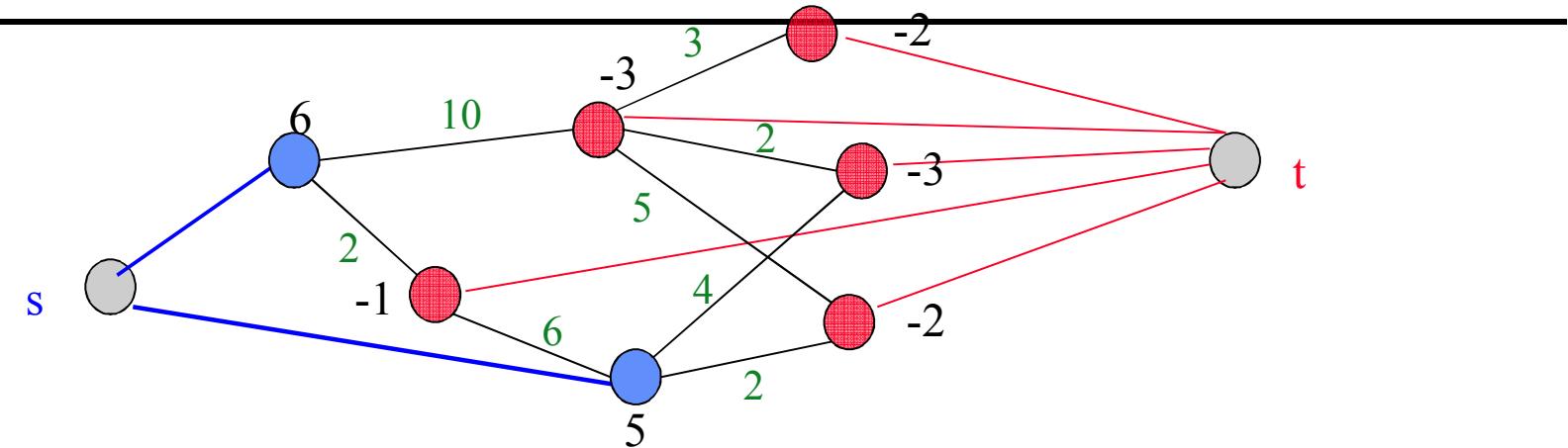
- Divide graph into two parts (bisection) so that
 - load/generation mismatch is maximum.
 - cutsize is minimum.

imbalance= 6; cutsize=2

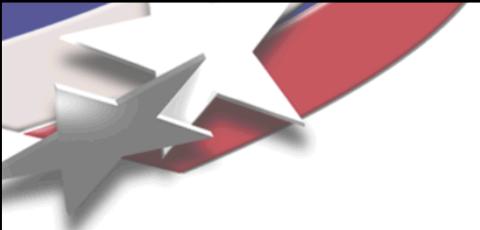
imbalance=10; cutsize=3

imbalance=11; cutsize=5

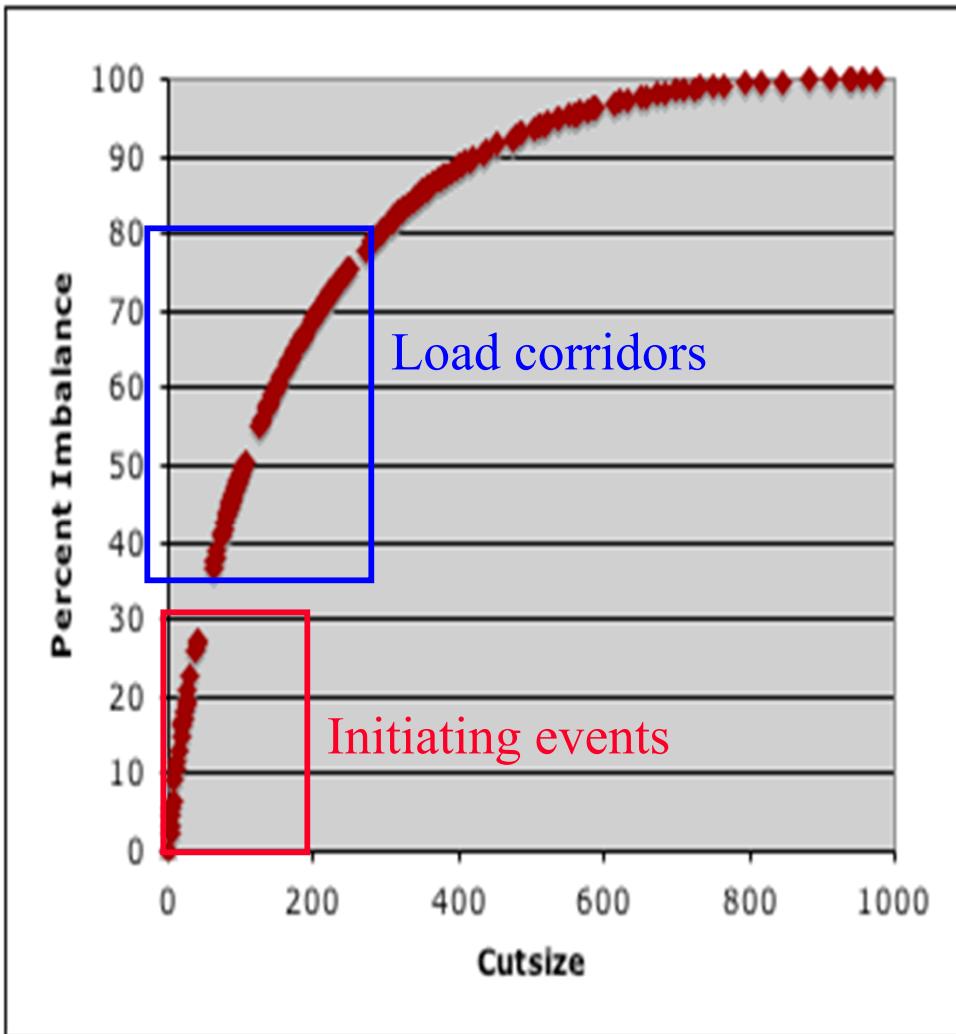
Solving the inhibiting cut problem



- Constrained problem is NP-complete.
- Goal: minimize α (cutsize) - $(1 - \alpha)$ imbalance
 - α is the relative importance of cutsize compared to imbalance.
- Solution: use a standard min-cut algorithm.
- Min-cut gives an *optimal* solution to the linearized inhibiting bisection problem.
- Other versions are solvable
 - Minimize cutsize/imbalance
 - Minimize capacity*(cutsize-1)/cutsize



Inhibiting bisection enables fast analysis of large systems



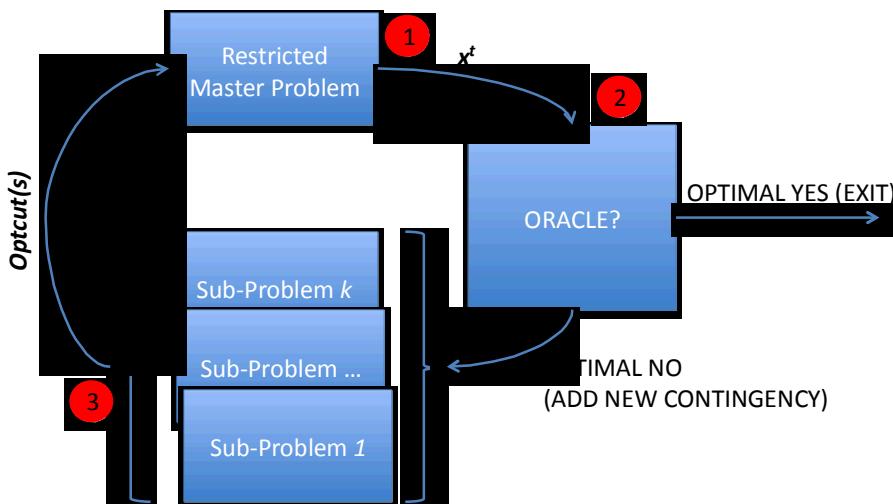
- Experimented on a Simplified model for Western states with 13,374 nodes and 16,520 lines.
- Complete analysis using Goldberg's min-cut solver takes minutes
- Solutions with small cutsize can be used to detect **initiating events** and groups of vulnerabilities
- Solutions with medium cutsize reveal **load corridors** that can be used to contain cascading

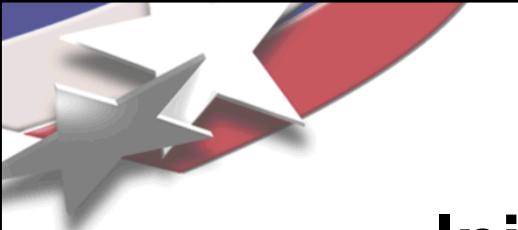
N-k survivable network design problem

- Improve a network efficiently to make it resilient to contingencies
 - **Minimize** the improvement cost such that the **minimum** number of lines for the **maximum** flow to be below a threshold B is above a threshold C.
- Solution approaches:
 - A single problem with a separate set of constraints for each contingency
 - forms a giant problem
 - Bender's decomposition
 - limits the memory requirements
 - the number of subproblems is still very large, prohibitively expensive for large N and k.
 - **Proposed Method: Delayed Contingency Generation**

Delayed contingency generation

- **Outline of the algorithm**
 - Solve a restricted master problem to identify candidate lines to add.
 - Solve the network inhibition problem
 - If we cannot break the network, current solution is optimal
 - If not, add a constraint to the master problem for the identified vulnerability.
- **Efficient solution of the interdiction problem is the key enabler.**





Initial results show scalability

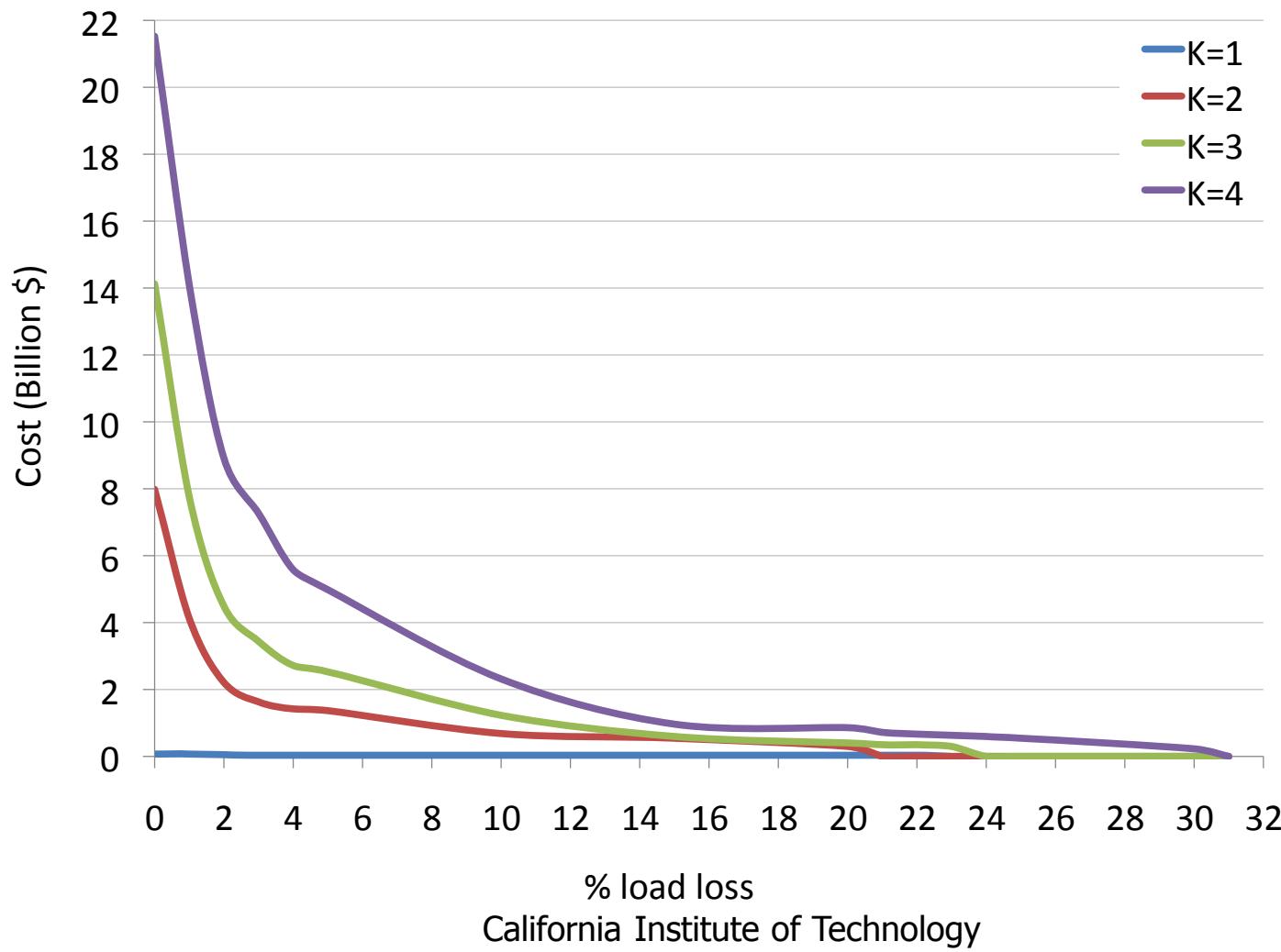
IEEE Test Systems	K	N	# of possible contingencies	EF (sec.)	CPA (sec.)	DCG (sec.)
30	1	82	82	0	0	0
118	1	358	358	20	4	4
179	1	444	444	33	11	19
30	2	123	>7K	81,722	34	1
118	2	537	>140K	x	2,142	41
179	2	666	>200K	x	5,924	174
30	3	164	>700K	x	3,045	9
118	3	716	>60M	x	x	398
179	3	888	>116M	x	x	653
30	4	205	>72M	x	x	67
118	4	895	>26B	x	x	2,708
179	4	1110	>63B	x	x	11,999

Using Cplex to solve MILPs

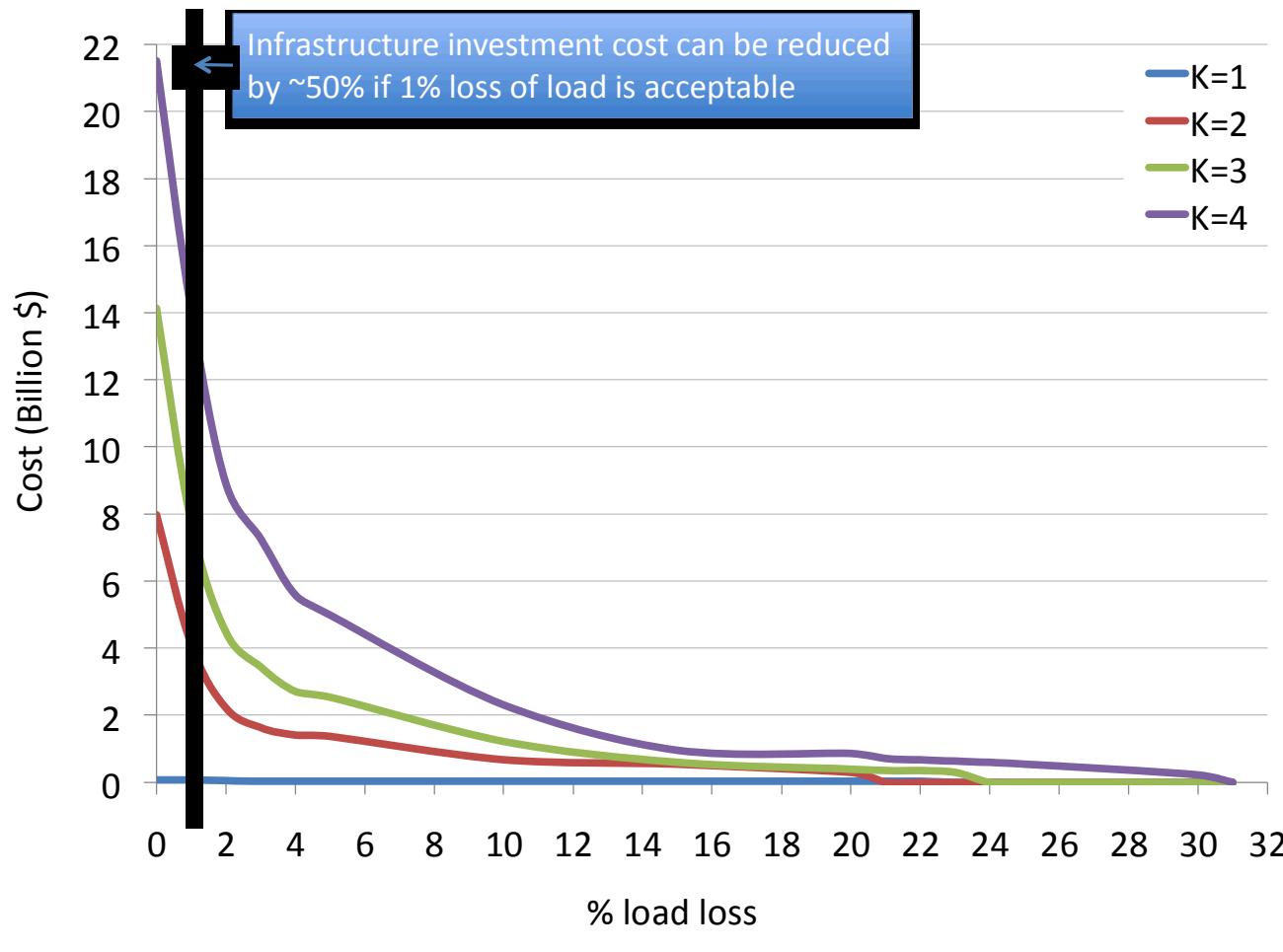
Only a small subset of potential contingencies are considered.

IEEE Test Systems	N	K	No. of contingencies	Total time	MP time	NIP time	SP time	No. of contingencies evaluated
30	82	1	82	0	0	0	0	3
118	358	1	358	4	0	2	1	17
179	444	1	444	19	1	7	10	51
30	123	2	>7K	1	0	1	0	15
118	537	2	>140K	41	3	26	12	58
179	666	2	>200K	174	6	50	118	158
30	164	3	>700K	9	2	5	2	43
118	716	3	>60M	398	25	303	70	128
179	888	3	>116M	653	21	193	439	284
30	205	4	>72M	67	7	23	37	156
118	895	4	>26B	2,708	399	1,698	612	359
179	1110	4	>63B	11,999	4,939	1,822	5,237	899

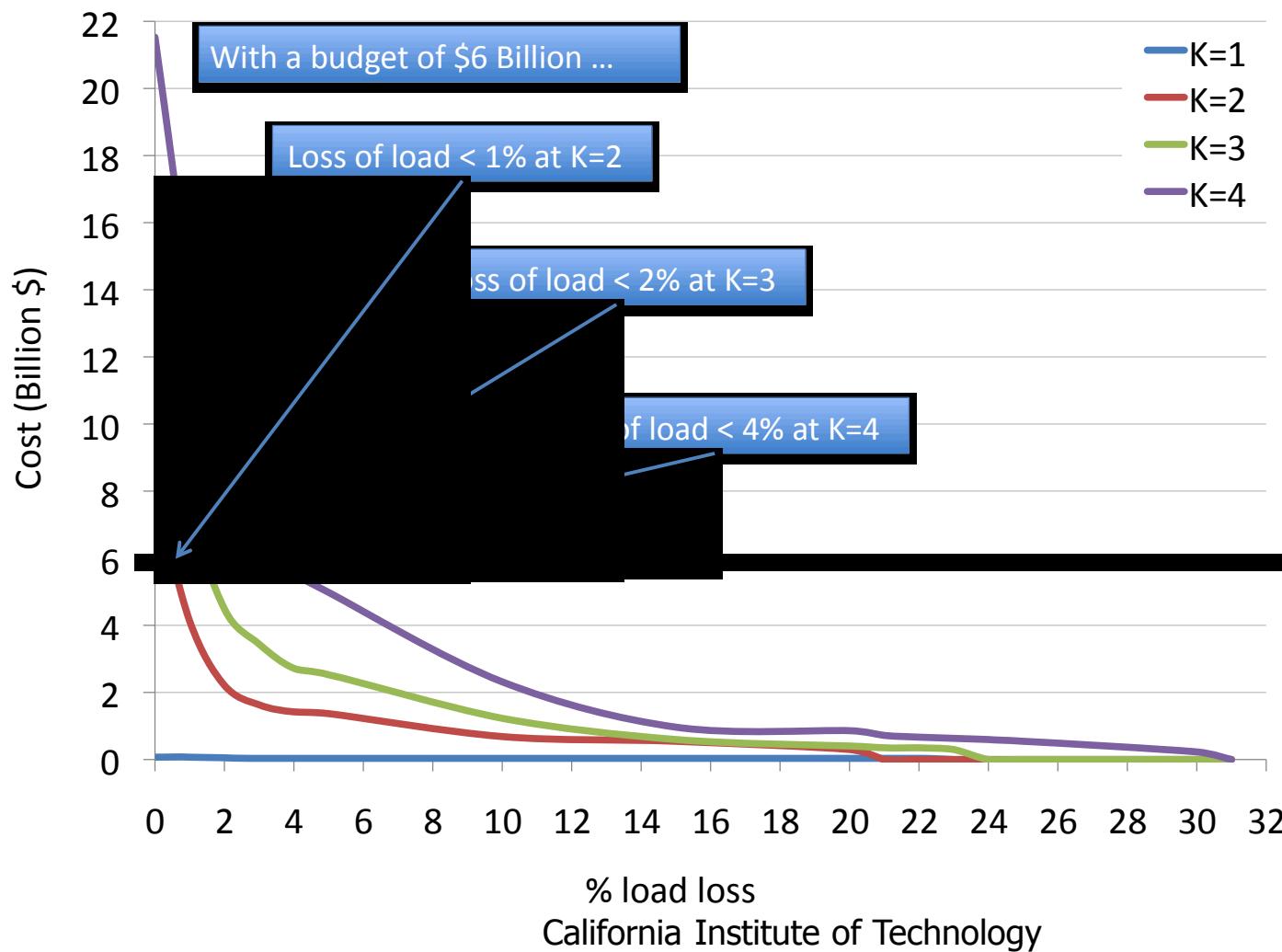
Cost analysis



Cost of perfectness



Benefits of humbleness



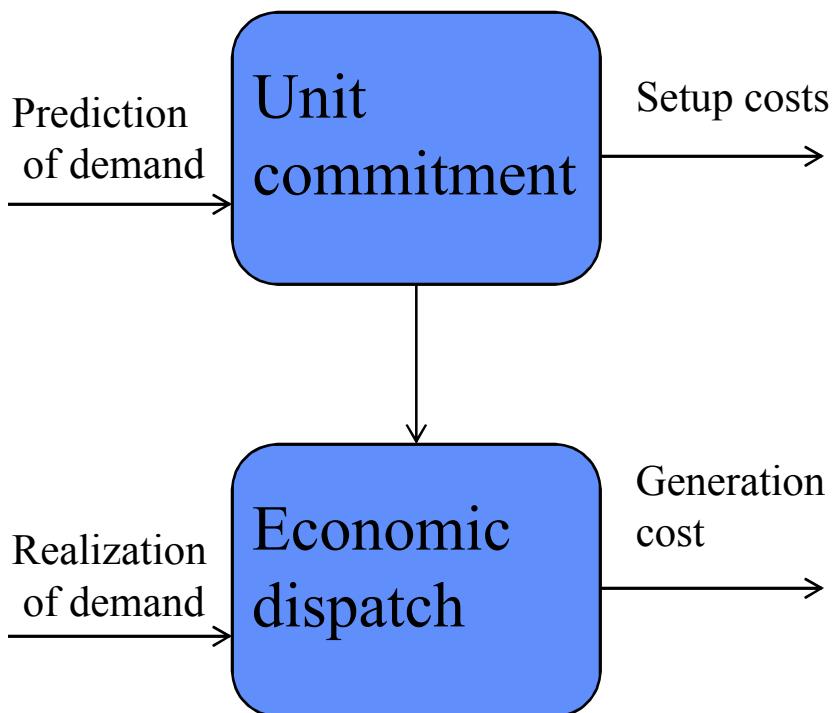
Uncertainties of renewables pose a crucial challenge for grid operations

Source: <http://saferenvironment.wordpress.com> [Full link](#)

Source: <http://www.thesierraleonetelegraph.com/?p=5393>

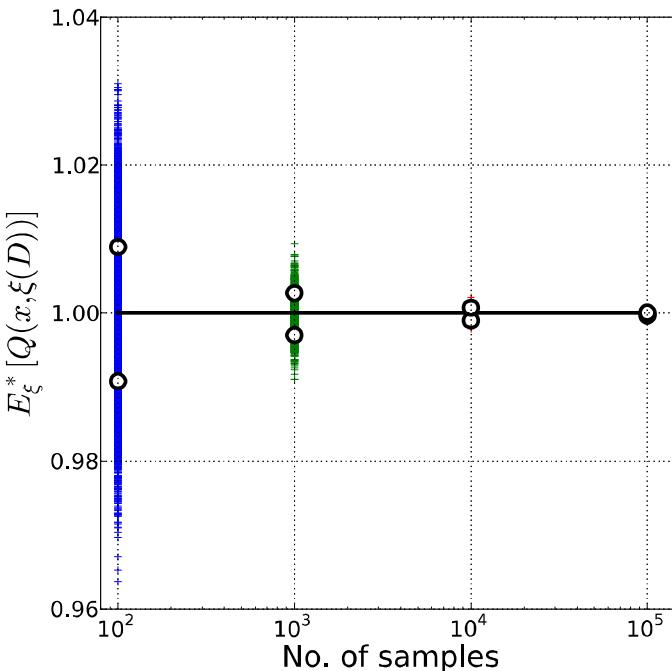
- Most renewable resources cannot be controlled and involve significant uncertainties.
- High penetration of renewables lead to a significant change in operations due to uncertainty.
- Storage technologies are not adequate enough, yet.
- Operations require decision making under uncertainty.
 - Stochastic optimization is essential.
 - Better models for handling uncertainty are needed.

Operational problems require stochastic optimization



- Sample Problem: Unit Commitment
- Fundamental problem in operations
- Two stage problem
 - Decide on the state of big and slow generators under a prediction of demand/ renewables
 - Operate on a realization of uncertainties to minimize generation costs
- Standard approach Monte Carlo Sampling

Efficient Model for Uncertainty: Polynomial Chaos Expansion

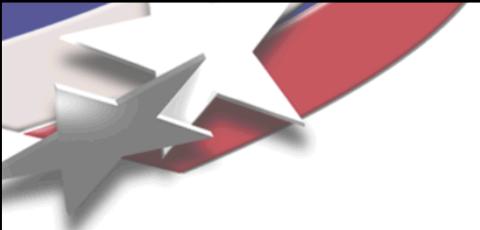


Thiam and DeMarco: “Simply put, when uncertainty is credibly accounted for such methods yield solutions for economic benefit of a transmission expansion in which the “error bars” are often larger than the nominal predicted benefit.”

- Error for Monte Carlo
 $\text{Var}(f)/\text{sqrt}(S)$
- Accurate estimations render optimization problems impractical.
- Proposed Solution: Polynomial chaos expansion
 - Commonly used for uncertainty quantification in CSE applications
 - Core idea: preprocess the random variables to build a surrogate that represents random variables compactly
- Promising Initial results:
 - Currently working on adding this to the optimization loop

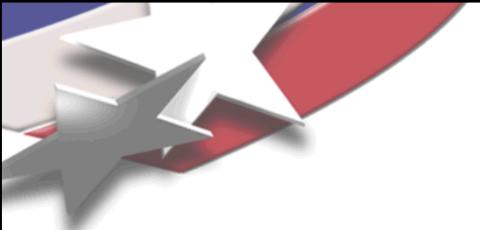
Concluding remarks

- Optimization problems with contingency constraints lie at the heart of many problems in power systems operations and planning.
- Recent progress in contingency analysis has paved the way for higher objectives.
 - Vulnerability analysis of a power system can be studied as bi-level MINLP problem.
 - Special structure of a feasible solution to our MINLP formulation can be exploited for a simpler approach for vulnerability detection.
 - Our combinatorial techniques can analyze vulnerabilities of large systems in a short amount of time.
- Delayed contingency generation approach shows promising results for N-k contingency constrained network improvement problem.
- Current work
 - Improve current results
 - Use DC power flow
 - Apply the same approach to unit-commitment



Acknowledgements

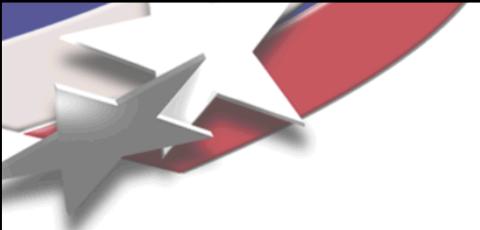
- Richard Chen, **Amy Cohn, Jean-apul Watson, Bernard Lesieutre, Juan Meza, Vaibhav Donde, Vanessa Lopez, Chao Yang, Adam Reichert, Yonatan Fogel, Sandip Roy, and Aydin Buluc** contributed to this work.



Related Publications

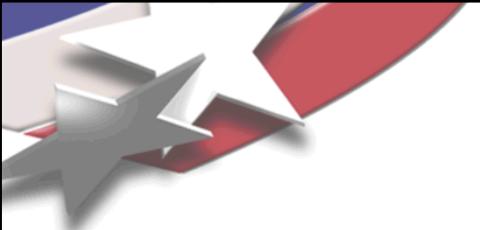
- P., Meza, Donde, and Lesieutre, "Optimization Strategies for the Vulnerability Analysis of the Power Grid," *SIAM Optimization*, 20 (4), pp. 1786-1810, 2010.
- Donde, Lopez, Lesieutre, P., Yang, and Meza, "Severe Multiple Contingency Screening in Electric Power Systems," *IEEE T. Power Systems*, 23(2), pp. 406-417, 2008.
- Lesieutre, P., and Roy, "Power System Extreme Event Detection: The Vulnerability Frontier," in *Proc. 41st Hawaii Int. Conf. on System Sciences*, p. 184, HI, 2008.
- P., Reichert, and Lesieutre, "Computing Criticality of Lines in a Power System," *Proc. 2007 IEEE Int. Symp. Circuits and Systems*, pp. 65—68, New Orleans, LA, May 2007.
- Lesieutre, Roy, Donde, and P., "Power system extreme event analysis using graph partitioning," *Proc. the 39th North American Power Symp.*, Carbondale, IL, 2006.
- Donde, Lopez, Lesieutre, P., Yang, and Meza, "Identification of severe multiple contingencies in electric power networks," *Proc. the 38th North American Power Symp.*, Ames, IA, October 2005.
- P., Fogel, and Lesieutre, ``The Inhibiting Bisection Problem," Technical Report: LBNL-62142, Lawrence Berkeley National Laboratory, Berkeley, CA.

- **Questions?**

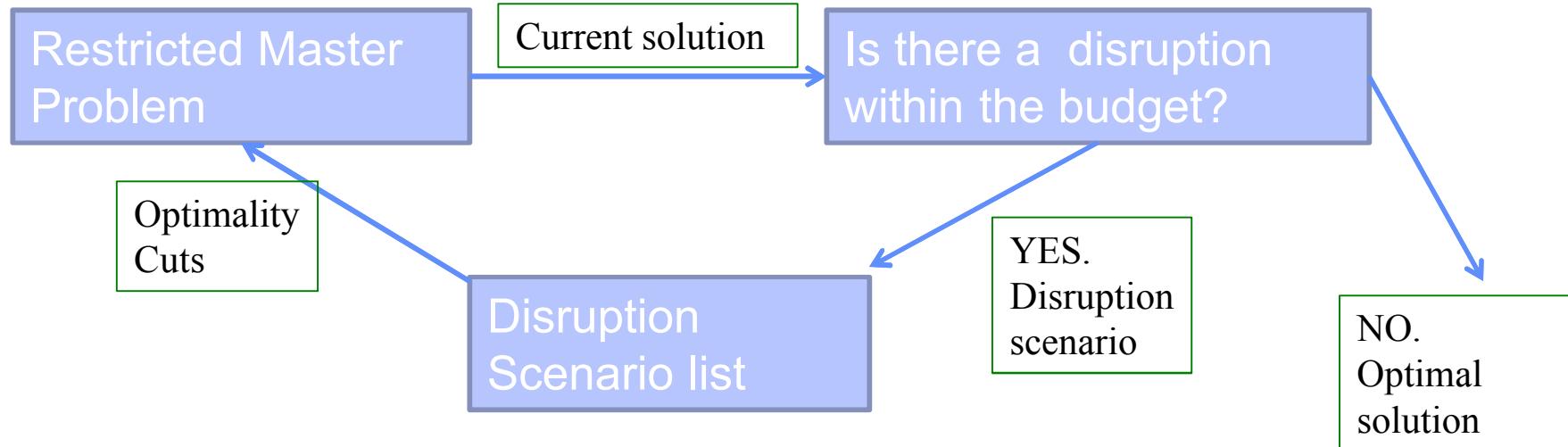


Breakdown of runtimes

Test Systems	No. poss. scen.	No. eval. scen.	Total time	RMP time	NDP time	SP time
1	82	3	0	0	0	0
2	358	17	4	0	2	1
3	444	51	19	1	7	10
4	$> 7K$	15	1	0	1	0
5	$> 140K$	58	4	3	26	12
6	$> 200K$	158	174	6	50	118
7	$> 700K$	43	9	2	5	2
8	$> 60M$	128	398	25	303	70
9	$> 116M$	284	653	21	193	439
10	$> 72M$	156	67	7	23	37
11	$> 26B$	359	2708	399	1698	612
12	$> 63B$	899	11999	4939	1822	5237



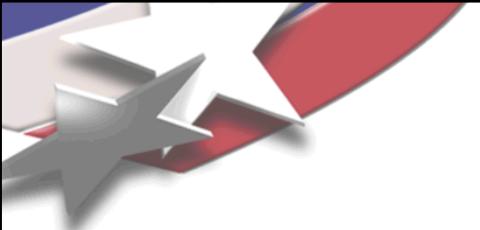
Alternative Formulation



- **Outline of the algorithm**
 - Solve a restricted master problem to identify candidate lines to add.
 - Solve the network inhibition problem
 - If we cannot break the network, current solution is optimal
 - If not, add a constraint to the master problem for the identified vulnerability.
- **Efficient solution of the interdiction problem is the key enabler.**

N-k survivable network design

- How do we improve a network effectively to make it resilient to contingencies? cost
- It is a tri-level discrete optimization problem
 - **Minimize** the improvement cost such that the **minimum** number of lines for the **maximum** flow to be below a threshold B is above a threshold C.
- We can
 - build on our work on network interdiction
 - rely on the reasonable resilience of the existing network.
- The same paradigm can be applied to various other optimization problems in power systems.



Take home lessons

All models are wrong; some are useful.

George E.P. Box

Graph models are useful, because

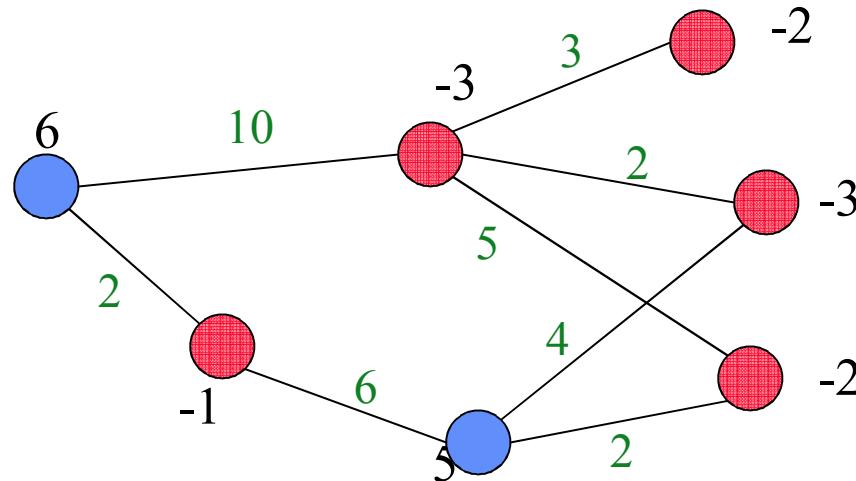
- *they have the flexibility to model a variety of problems*
- *we have the ability to solve associated problems.*
- *That your problem involves a graph does not imply graph algorithms will provide a solution.*
- *That you cannot see a graph problem immediately does not mean it does not exist.*

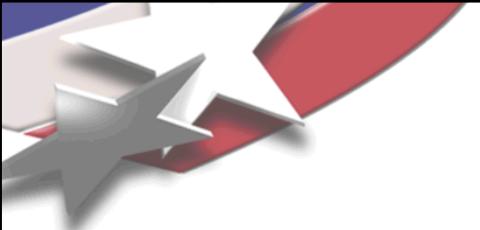
Vulnerability analysis as a combinatorial problem

Given a graph $G=(V,E)$ with weights on its vertices

- **positive** for generation,
- **negative** for loads,

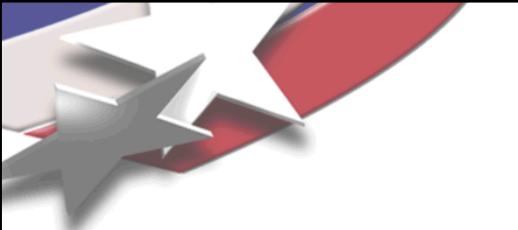
find a partition of V into two loosely connected regions with a significant **load** / **generation** mismatch.





Concluding remarks

- Graph models are useful!
- That your problem involves a graph does not imply graph algorithms will provide a solution.
- That you cannot see a graph theoretical problem immediately does not mean it does not exist
- Vulnerability analysis of a power system can be studied as bi-level MINLP problem.
- Special structure of a feasible solution to our MINLP formulation can be exploited for a simpler approach for vulnerability detection.
- Our combinatorial techniques can analyze vulnerabilities of large systems in a short amount of time.



Future work

- Study the gap between the combinatorial model and the nonlinear flow model
 - quantify the gap
 - find better approximations
 - understand its effect on dynamics
- Include vulnerability analysis as a constraint in decision making
 - daily operations unit commitment
 - system upgrade, maintenance scheduling
- Surrogates challenge:
 - We do not need a power flow model, we need a certificate that a solution exists.
- Generalizations of the inhibiting bisection problem
- New project starting in FY11 will look at long term planning for the power grid.