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Stacked 2D-crystals: a new class of materials

* Various two-dimensional (2D) crystals

Monolayer h-BN

=2

TiO,
NbOg Graphene & h-BN
Titanium Niobate http://en.wikipedia.org/wiki/Graphene
Germanane Osada et al., Adv. Funct. Mater. 21, 3482 (2011)

Molybdenum dichalcogenide Bianco et al., ACS Nano, 7, 4414 (2013)
Lee et al., Advanced Materials, 24, 2320 (2012)

* Hybrid 2D-solids can be r'eallzed

- Combining materials ..t
- Emerging properties
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Graphene/BN superlattice
Graphene on BN Haigh et al., Nature Materials 11, 764 (2012)

- Dean et al., Nature Physics 7, 693 (2011); Dean et al.,
2D-based heterostructure N o )
Novoselov et al., Nature 490, 192 (2012)

How would 2D-crystals interact electronically with each other?
- We examine Twisted Bilayer Graphene (TBG)assembled via transfer process




How does azimuthal misorientation manifest

itself in bilayer graphene?

- Bernal stacked graphene: strong interlayer interaction

v h 4
We study:

Microscopic & atomic view of Twisted Bilayer Graphene (TBG)
Interacting Dirac cones through moiré periodic potential
Tunable optical absorption & emergent color domains

Defects & inhomogeneities

Li et al., Nature Physics 6, 109 ( 2010)




LEEM/PEEM and ARPES
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We make TBG by transfer

» Transferring CVD graphene onto epi-graphene (on SiC) yields large
TBG domains with various twist angles
- Carried out in collaboration with Jeremy Robinson at Naval Research Laboratory
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- Monolithic epi-graphene
- Large-domain CVD graphene (>100um-size domain)

Epi-graphene on SiC(0001) CVD graphene
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TBG shows electron reflectivity characteristic

of bilayer graphene

» Two dips in electron reflectivity spectra: bilayer graphene on SiC
- Low energy electron microscopy (LEEM) measurement
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Ohta et al., PRB, 85, 075415 (2012)



TBG has long-range atomic order

» Diffraction patterns from TBG with a small and a large twist angles
- Diffraction spots due to moiré

Real-space moiré vectors

© Underlayer diffraction spots

© Qverlayer diffraction spots

- Minimum damage of graphene was confirmed using Raman spectroscopy
* Please see PRB, 85, 075415 (2012) for detail



TBG has two sets of Dirac cones

* Electronic dispersion is measured using PEEM (photoemission electron
microscopy) and ARPES (angle-resolved photoemission spectroscopy)

- Upper (blue hexagon) and lower (red hexagon)
graphene sheets create two sets of Dirac cones
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Two Dirac cones display anti-crossing

* Departure from the simple Dirac cone picture
- Twist angle, 6 = 11.6°
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* Two cones' interaction leads to mini-gap
and van Hove singularities
- Match very well with DFT calculation
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Additional Dirac cone emerges

* Anti-crossing is found b/w the original and the additional Dirac cone
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Moiré periodic potential produces Dirac cones

» Umklapp scattering by moiré periodic potential
- Similar to moiré-induced Raman band and LEED spots
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Superlattice changes electronic dispersion

- Substrate or neighboring material provides periodic potentials

Surface superlattice

Mini-bands & gaps formed in
inversion layer of vicinal Si
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How does the band renormalization affect the

properties of TBG?

- Does interlayer interaction lead to changes in
properties of TBG other than electronic dispersion?

- How does it vary as a function of twist angle?

- Color variation is found in TBG!
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Electronic dispersion changes as a function of

twist angle

* Interlayer overlap integral (y;*) and the characteristic energy (v, Ak)
dictate band renormalization
- Crossovegat twist angle, 6 = 5°
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“Colored grain” are observed for TBG on
Si0O,/Si substrate

* Patches of “colored grain” observed in
optical microscope

- TBG on SiQ,/Si substrate

T Z=

Robinson et al., ACS Nano, 7, 637 (2013) & Science 152, 374 (2013)



Emerging absorption band is responsible for

"Colored grain”
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Optical absorption depends on the twist angle

/ | bilayer
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- Supported theoreftically

* LEED correlates the color to the twist angle
- LEED sensitive to the top layer only

Re g, (in units of Gyons)




Summary

Moiré influences the electronic structure of TBG
« Twisted Bilayer Graphene (TBG) can be produced using transfer approach
* Electronic dispersion is altered by moiré (long-range periodicity)
 Optical properties can be tuned by the twist angle
« Band renormalization is relatively robust against rotational disorders
Moiré is ubiquitous in 2D-solids: handle to tailor electronic properties
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For details of our work, please see the following publications:

+ Phys. Rev. B, 85, 075415, 2012: T. Ohta, T. E. Beechem, J. Robinson, G. L. Kellogg, Long-range atomic ordering and variable interlayer
interactions in two overlapping graphene lattices with stacking misorientations.

Phys. Rev. Lett. 109, 186807, 2012: T. Ohta, J. T. Robinson, P. J. Feibelman, A. Bostwick, E. Rotenberg, T. E. Beechem, Evidence for
interlayer coupling and moiré periodic potentials in twisted bilayer graphene.
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Beechem, Electronic Hybridization of Large-Area Stacked Graphene Films.
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Phls. Rev. B, 87, 041406(R), 2013: R. M. Feenstra, N. Srivastava, Q. Gao, M. Widom, B. Diaconescu, T. Ohta, 6. L. Kellogg, J. T.
Robinson, I. V. Vlassiouk, Low-energy Electron Reflectivity from Multilayer Graphene.

* ACS Nano, 8, 1655, 2014: T. E. Beechem, T. Ohta, B. Diaconescu, J. T. Robinson, Rotational Disorder in Twisted Bilayer Graphene.
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LEEM-PEEM research opportunities

* Postdoc in LEEM group at Sandia National Laboratories, Albuquerque
- Defects and 2D-electron gas in nitride semiconductor heterostructures
- Electronic properties of 2D-crystals and their stacks

* New research capabilities: energy-filtered LEEM-PEEM
- Real-time surface imaging and diffraction
- Electronic structure study using EELS and ARPES (UV-light sources)

For further information, please contact
Taisuke Ohta (fohta@sandia.gov)
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Following include supplemental slides



How does azimuthal misorientation manifest

itself in bilayer graphene?

STS indicates van Hove Moire
singularities (vHs)
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We study:
Microscopic & atomic view of Twisted Bilayer Graphene (TBG)
Interacting Dirac cones through moiré periodic potential

Tunable optical absorption & emergent color domains )
Defects & inhomogeneities
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Two graphene lattices form moiré

* Two layers of graphene stacked with an azimuthal (in-plane)
misorientation
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TBG shows characteristic electron reflectivity

of bilayer graphene

» Two dips in electron reflectivity spectra: bilayer graphene on SiC

- Low energy electron microscopy (LEEM) measurement

BG on C-layer
terminated SiC /— Graphene
Epi-bilayer on C-
ayer terminated SiC C-Iayer
termination

Electron reflectivity (a.u.)
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Epi-bilayer on H-
terminated SiC

H-termination

LEEM image of TBG B 4 ©
Electron energy (eV)

- Diffraction experiments and dark-field
imaging show large domain each with an
unique twist angle

Ohta et al., PRB, 85, 075415 (2012)



We confirmed the twist angle using LEED

* Twist angle was determined by comparing LEEM pattern orientation
and the information of thickness using optical image

- LEED is sensitive to only the top layer
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- Graphene thickness confirmed
using LEEM-IV
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We study local inhomogeneities

using Raman G-mode
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* Grains with giant Raman G-mode are
found in TBG on SiC
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We study local inhomogeneities

using Raman G-mode
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A_(TBG) / A (MLG)

» Sub-grains separated by wrinkles
and blisters

- Rotation disorders make Raman G-mode
intensity variation




Rotational disorder is quantified using Raman

Frequency [AU]
=
»

=~
o=

=
o

0 0.5 1 1.5 2 2.5 3 3.5
|©-6_| [Degree]

e
)

o
o

Frequency [AU]
b
=

o
N

o

-04 -0.2 0 0.2 0.4
AO-AOy, [Degree]

- Twist angle varies by ~1° within CVD
graphene domain

» Twist angle variations from Raman and
LEED match

» Sub-grains show ~0.1° twist angle
variation (below measurement limit)

- Future opportunity to improve the properties
of stacked 2D-crystals




We study MoS, using LEEM

» Identifying the crystallographic orientation and the domain size of
single-crystal MoS, monolayer

Single layer
MoS, crystal

- Dark-field images of MoS, film

Mann, Bartels, et al., European Phys. J. B 86, 226 (2013)



