

CONF-950923-11

LA-UR- 95 - 3380

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Title:

FEASIBILITY STUDY OF PLUTONIUM AND URANIUM MEASUREMENTS IN INPUT DISSOLVER SOLUTIONS

Author(s):

T. K. Li, O. Kitagawa, Y. Kuno, and A. Kurosawa

Submitted to:

**American Nuclear Society
"Fifth International Conference on
Facility Operations—Safeguards Interface"
Jackson Hole, WY USA
September 24-29, 1995
(FULL PAPER)**

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Form No. 836 R5
ST 2629 10/91

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

FEASIBILITY STUDY OF PLUTONIUM AND URANIUM MEASUREMENTS IN INPUT DISSOLVER SOLUTIONS^a

T. K. Li
Los Alamos National Laboratory
Los Alamos, NM 87545 USA
505/667-2167

O. Kitagawa, Y. Kuno, and A. Kurosawa
Power Reactor & Nuclear Fuel Development Corp.
Tokai-mura, Ibaraki-Ken, Japan
81-29-282-1111

ABSTRACT

We are studying the isotope dilution gamma-ray spectrometry (IDGS) technique for the simultaneous measurements of concentrations and isotopic compositions for both plutonium and uranium in spent-fuel dissolver solutions at a reprocessing plant. Previous experiments have demonstrated that the IDGS technique can determine the elemental concentrations and isotopic compositions of plutonium in dissolver solutions. The chemical separation and recovery methods for just plutonium were ion-exchange techniques using anion exchange resin beads and filter papers. To keep both plutonium and uranium in the sample for simultaneous measurements, a new sample preparation method is being studied and developed: extraction chromatography. The technique uses U/TEVA-Spec resin to separate fission products and recover both uranium and plutonium in the resin from dissolver solutions for measurements by high-resolution gamma-ray spectrometry.

I. INTRODUCTION

Accurate, rapid determinations of the plutonium and uranium in input dissolver solutions at reprocessing plants are very important for input accountability analysis and nuclear material control and for on-site verification: essential elements of the near-real-time accounting system at reprocessing plants. Recently, we have developed a novel technique, isotope dilution gamma-ray spectrometry (IDGS),¹⁻³ by using the isotope dilution principle and low-energy, high-resolution gamma-ray spectrometry.

IDGS has been successful in measuring plutonium isotopic composition and elemental concentrations of spent-fuel dissolver solutions with burnups up to 28 000 MWD/T. Precision for this measurement is better than 1% with a bias between IDGS and isotope dilution mass spectrometry (IDMS) of less than 0.2%. Using IDGS to analyze dissolver solutions for plutonium isotopic compositions, the precision is approximately 0.5% for the $^{240}\text{Pu}/^{239}\text{Pu}$ ratio and 0.2% for the ^{239}Pu weight percent within a 1-h count time. The agreement between IDGS and IDMS for dissolver solutions is very good, especially so for the $^{240}\text{Pu}/^{239}\text{Pu}$ ratio (average IDGS/IDMS ratio is 0.997) and the weight percent of ^{239}Pu (average IDGS/IDMS ratio is 0.999), which are important for determining the total plutonium concentration. The chemical separation methods used to recover plutonium exclusively were anion-exchange resin bead (BIO-RAD AG-MP1 NO₃ form)¹⁻⁴ and filter paper techniques.⁵

The objective of the present feasibility study is to further develop the IDGS technique for the simultaneous measurements of concentrations and isotopic compositions for both plutonium and uranium in spent-fuel dissolver solutions at a reprocessing plant. The technique under development includes both sample preparation and analysis methods. For simultaneous measurements of both plutonium and uranium, the most important issue is to develop a new method to separate uranium and plutonium from fission products and other actinides and then recover both uranium and plutonium. Furthermore, it is equally important to improve the analysis method so that the precision and accuracy of the plutonium analysis remain unaffected while uranium is

^aThis work is supported by the US Department of Energy, Office of Nonproliferation and National Security, International Safeguards Division and Power Reactor & Nuclear Fuel Development Corp., Japan.

also recovered from the sample. Of the few separation methods available, we found extraction chromatography⁶ to be the best method.

This paper will discuss extraction chromatography for recovering both plutonium and uranium in the sample and will discuss the results of plutonium concentration and isotopic analysis with uranium in the sample by using this new separation method.

II. SAMPLE PREPARATION

Gamma-ray measurements of plutonium in highly radioactive dissolver solutions from reprocessing plants require the rapid and efficient separation of fission products. Ion-exchange separation was used to satisfactorily purify and recover plutonium for the IDGS measurement. However, for simultaneous measurements of uranium and plutonium, we are developing a new sample preparation method, extraction chromatography using U/TEVA•Spec resin⁶ (for uranium and tetravalent actinides specifically) to purify and recover both uranium and plutonium from dissolver solutions. U/TEVA•Spec is a novel extraction chromatographic resin composed of diethyl amylphosphonate sorbed on an inert polymeric support (Amberlite XAD-7 or Amberchrom CG-71). The resin is commercially available from EIChroM Industries, Inc.

Plutonium and uranium in dissolver solutions (1 ml) were first completely adjusted to tetravalency with Fe(II) and NaNO₂. After evaporation and redissolution with 8M HNO₃, dissolver solutions were passed through the extraction chromatographic column where fission products and americium were removed by 8M HNO₃ followed by 3M HNO₃. The absorbed plutonium and uranium are then eluted using 0.01M HNO₃. The best results were obtained when the elution of purified plutonium and uranium was reabsorbed in an extraction chromatographic column where the fission products were re-washed with 3M HNO₃. The completely purified plutonium and uranium sample is measured by high-resolution gamma-ray spectrometry to determine the plutonium isotopic composition.

For concentration measurements, 1-ml dissolver solutions were well mixed with spikes. These large-size dry (LSD) spikes, containing ~98% ²³⁹Pu and ~19% ²³⁵U, were used in previous experiments.¹⁻⁵ The spiked dissolver solutions were then separated, eluted, recovered, and measured as described above for unspiked dissolver solutions.

III. MEASUREMENT METHOD

Details of the IDGS measurement technique and method are described in Refs. 1-2. In this technique, briefly, the isotopic composition is determined by measuring the respective gamma rays of isotopes from the dissolver solution. The measurement method of plutonium isotopic ratios is based on high-resolution, gamma-ray spectrometry. Because of the small sample volumes (containing less than 1 mg of plutonium) in the experiment, the isotopic ratios ²³⁸Pu/²³⁹Pu, ²⁴⁰Pu/²³⁹Pu, and ²⁴¹Pu/²³⁹Pu are determined by measuring the high-intensity, low-energy gamma-ray ratios 43.48 keV/51.63 keV, 45.23 keV/51.63 keV, and 148.6 keV/129.3 keV, respectively.¹⁻³ All gamma-ray peak areas are determined by using peak fitting of response function analysis. The absolute ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, and ²⁴¹Pu fractions in the sample can then be determined by combining isotopic ratios and correcting for the ²⁴²Pu content, which is predicted by isotope correlation techniques that work well for material from known reactor types.

With regard to the total plutonium concentration, the unknown solutions are spiked with a plutonium isotope of accurately known concentration and isotopic composition. The total plutonium concentration is determined by calculating the difference among the isotopic ratios of the spike, the spiked samples (unknown sample plus the spike), and the unspiked samples (unknown sample only). By measuring the isotopic compositions of both unspiked and spiked dissolver solution samples, we can determine the concentration of plutonium in the unknown dissolver solution, C_u , as follows:¹⁻²

$$C_u = \frac{M_s}{V_u} \cdot \frac{W_s^9}{W_u^9} \cdot \frac{R_m - R_s}{R_u - R_m},$$

where M_s = Mass of plutonium in the spike,
 V_u = Volume of dissolver solution taken,
 W_s^9 = Weight fraction of ²³⁹Pu in the spike,
 W_u^9 = Weight fraction of ²³⁹Pu in the dissolver solution,
 R_m = The ²⁴⁰Pu/²³⁹Pu ratio in the spiked sample,
 R_s = The ²⁴⁰Pu/²³⁹Pu ratio in the spike, and
 R_u = The ²⁴⁰Pu/²³⁹Pu ratio in the dissolver solution sample.

In this equation, the values of M_s , V_u , W_s^9 , and R_s are known. Therefore, only the values of R_u and W_u^9 in the unspiked dissolver-solution sample and R_m in the spiked sample need to be measured by gamma-ray spectrometry.

The measurement system is a standard high-resolution gamma-ray spectrometer, consisting of a hyperpure germanium (HPGe) planar detector, an EG&G ORTEC 92X-W3 Spectrum Master, and an IBM/PC compatible computer. The HPGe planar detector had dimensions of 1000 mm² by 13 mm and a resolution (full width at half maximum) of 560 eV at 122 keV. The EG&G ORTEC 92X-W3 features a high-voltage bias supply for the detector, spectroscopy amplifier, pile-up rejecter and live-time corrector, and a 16-k-channel analog-to-digital converter.

IV. RESULTS AND DISCUSSION

Six batches of input spent-fuel dissolver solutions with various ranges of plutonium concentrations and isotopic compositions were prepared, measured, and analyzed in this study.

A. Performance of Sample Preparation

Figure 1 shows the gamma-ray spectra of dissolver solutions from two different sample preparation methods, for a 1-h count time. For easy comparison, we shifted the plot of the top gamma-ray spectrum slightly to the right. The top (dotted) spectrum is the gamma-ray spectrum from a dissolver solution obtained by using anion-exchange resins, as in the previous experiments. No uranium gamma rays are found in the spectrum. This indicates that no uranium has been recovered by using anion-exchange resins. The bottom (solid) spectrum is the gamma-ray spectrum of another dissolver solution prepared with extraction chromatography using U/TEVA•Spec resins. Clear and intense gamma rays of uranium, e.g., 143.8 keV and 185.7 keV from ^{235}U , can be identified. The uranium can be recovered with a high yield. Furthermore, the continuum background from high-energy gamma rays of fission products in the bottom spectrum is lower than that in the top spectrum. This indicates that the fission products are removed well with the extraction chromatographic method.

B. Plutonium Isotopic Compositions

Table I shows the gamma-ray plutonium isotopic compositions (in weight percent) for the dissolver solutions as determined by IDGS. The range of plutonium isotopic abundances (wt. %) is 0.34% to

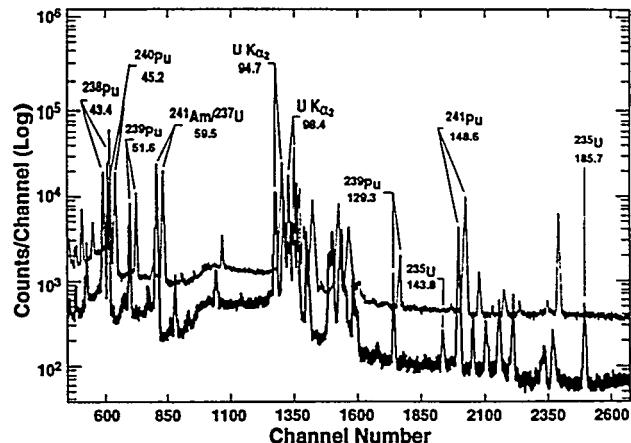


Fig. 1. Gamma-ray spectra of dissolver solutions from two different sample preparation methods, for a 1-h count time. For easy comparison, we shifted the plot of the top gamma-ray spectrum slightly to the right. The top (dotted) spectrum is the gamma-ray spectrum from a dissolver solution obtained by using anion-exchange resins, as in the previous experiments. The bottom (solid) spectrum is the gamma-ray spectrum of another dissolver solution prepared with extraction chromatography using U/TEVA•Spec resins.

1.24% for ^{238}Pu , 58.24% to 70.84% for ^{239}Pu , 21.21% to 27.94% for ^{240}Pu , 4.00% to 8.9% for ^{241}Pu , and 1.4% to 5.2% for ^{242}Pu . The uncertainties represent the estimated precision (1σ) of gamma-ray spectroscopy, for a 1-h count time, as calculated from counting statistics, including uncertainties from relative efficiencies. The typical precision within a 1-h count time is 0.6% for ^{238}Pu , 0.2% for ^{239}Pu , 0.5% for ^{240}Pu , and 1.3% for ^{241}Pu .

The plutonium isotopic compositions of dissolver solutions as determined by IDGS and IDMS are compared in Table II. The average IDGS/IDMS ratios for 6 samples are 1.000, 1.003, 0.998, and 1.003 for ^{239}Pu , ^{240}Pu , ^{241}Pu , and $^{240}\text{Pu}/^{239}\text{Pu}$, respectively. The agreements between IDGS and IDMS are extremely good. For ^{238}Pu wt%, IDGS results are compared with alpha counting results. The bias, ~2%, between IDGS and alpha counting might come from the uncertainty of the alpha counting method.

B. Plutonium Element Concentrations

The plutonium element concentrations from IDGS and IDMS are compared in Table III. The plutonium concentrations of six dissolver solutions varied from 0.62 g

TABLE I. Plutonium Isotopic Compositions (wt%) of Dissolver Solutions as Determined by IDGS

Dissolver Solution	238Pu		239Pu		240Pu		241Pu		242Pu
	wt%	σ (%)	wt%	σ (%)	wt%	σ (%)	wt%	σ (%)	wt%
1	0.729	0.50	66.793	0.14	22.754	0.41	7.034	1.11	2.69
2	0.498	0.59	69.738	0.15	21.995	0.47	5.802	1.22	1.97
3	0.480	0.76	70.576	0.19	21.211	0.62	5.861	1.57	1.87
4	1.242	0.47	58.241	0.16	26.419	0.38	8.899	0.99	5.20
5	0.340	0.82	70.840	0.19	23.418	0.60	4.001	1.67	1.40
6	0.751	0.63	59.601	0.21	27.943	0.47	7.362	1.31	4.34

TABLE II. Comparison of Plutonium Isotopic Compositions as Determined by IDGS and IDMS

Dissolver Solution	IDGS/IDMS				
	238Pu*	239Pu	240Pu	241Pu	240Pu/239Pu
1	1.0549	1.0027	1.0026	0.9905	1.0000
2	0.9482	1.0008	1.0093	1.0008	1.0084
3	0.9413	1.0051	1.0000	0.9909	0.9949
4	0.9971	0.9963	0.9970	0.9999	1.0007
5	0.9638	1.0012	1.0112	1.0051	1.0100
6	0.9937	0.9942	0.9974	0.9983	1.0033
Average	0.9832	1.0000	1.0029	0.9976	1.0029
Std. Dev.	0.0420	0.0041	0.0061	0.0058	0.0056
% RSD	4.26	0.41	0.60	0.58	0.56

*For 238Pu wt%, IDGS results are computed with alpha counting results.

Pu/l to 1.34 g Pu/l. The typical uncertainty of IDGS measurements is less than 1% within a 1-h count time for both unspiked and spiked samples. The average plutonium concentration obtained by IDGS in this experiment agrees with that obtained by IDMS within 0.13%. That is consistent with the results from previous experiments of 0.16% by anion-exchange resin and filter techniques.⁵ This result indicates that the precision and accuracy of the plutonium analysis are not affected while uranium is retained in the sample with plutonium.

V. CONCLUSIONS

The previous IDGS technique analyzed plutonium only. By developing a new sample preparation method, we can now recover uranium from dissolver solutions. The new sample preparation method rapidly separates fission products and recovers plutonium and uranium from highly radioactive input spent-fuel dissolver solutions through an extraction chromatographic technique. Precision and accuracy of the plutonium analysis are not affected, and even better, while uranium is retained in the

TABLE III. Comparison of Plutonium Concentrations of Dissolver Solutions as Determined by IDGS and IDMS

Dissolver Solution	IDMS (g Pu/L)	IDGS		IDGS/IDMS
		(g Pu/L)	σ (%)	
1	1.168	1.169	0.93	1.0011
2	0.850	0.847	0.93	0.9961
3	0.615	0.619	1.17	1.0058
4	1.342	1.344	0.87	1.0012
5	0.677	0.676	1.12	0.9984
6	0.941	0.946	0.92	1.0052
Average				1.0013
Std. Dev.				0.0037
% RSD				0.37

sample with plutonium. For plutonium isotopic compositions in dissolver solutions, the bias between IDGS and IDMS is <0.3% for the $^{240}\text{Pu}/^{239}\text{Pu}$ ratio and <0.01% for ^{239}Pu (wt%). The precision is ~0.5% for the $^{240}\text{Pu}/^{239}\text{Pu}$ ratio and <0.2% for ^{239}Pu (wt%), within a 1-h count time. For plutonium concentrations in dissolver solutions, the bias between IDGS and IDMS is less than 0.15% with a precision of better than 1%, within a 1-h count time.

For future work, we are developing a prototype IDGS system, including analysis physics and algorithms and analysis software, to simultaneously determine uranium concentration and isotopes along with plutonium concentration and isotopes in input spent-fuel dissolver solutions at a reprocessing plant.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the Analysis Section of the Tokai Reprocessing Plant. Much of this work would be impossible without their excellent support, assistance, and cooperation. We are indebted to Tom Kelley for helping develop the analysis software.

REFERENCES

1. T. K. Li, Y. Kuno, K. Nakatsuka, J. L. Parker, K. Kaminaga, and T. Akiyama, "Determination of Plutonium Concentration and Isotopic Compositions by Isotope Dilution Gamma-Ray Spectroscopy on Resin Beads," Los Alamos National Laboratory report LA-11827-MS/PNC TN 841090-001 (May 1991).
2. T. K. Li, Y. Kuno, S. Sato, K. Nakatsuka, and T. Akiyama, "Determination of Plutonium Concentration and Isotopic Compositions by Isotope Dilution Gamma-Ray Spectroscopy on Resin Beads," *Nucl. Mater. Manage.* XIX (Proc. Issue), 390-396 (1990).
3. T. K. Li, J. L. Parker, Y. Kuno, S. Sato, A. Kurosawa, and T. Akiyama, "Development of Isotope Dilution Gamma-Ray Spectrometry for Plutonium Analysis," in *Proc. 13th ESARDA Symposium on Safeguards and Nucl. Mater. Manage.* (ESARDA, Avignon, France, 1991) 24, pp 175-185.

4. T. K. Li, Y. Kuno, S. Sato, J. L. Parker, M. Kamata, and T. Akiyama, "Further Development of IDGS-Isotope Dilution Gamma-Ray Spectrometry," *Nucl. Mater.* **XX** (Proc. Issue), 253-259 (1991).
5. K. Nishida, Y. Kuno, S. Sato, T. K. Li, J. L. Parker, and E. A. Hakkila, "Improvement of Sample Preparation for Input Plutonium Accountability Measurement by Isotope Dilution Gamma-Ray Spectrometry," *Nucl. Mater. Manage.* **XXI** (Proc. Issue), 608-614 (1992).
6. E. P. Horwitz, R. Chiarizia, M. L. Dietz, H. Diamond, and D. M. Nelson, "Separation and pre-concentration of actinides from acidic media by extraction chromatography," *Analytica Chimica Acta* **281** 361-372 (1993).