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Summary. Automatic, all-hex meshing procedures are required in many environ-
ments. However, current methods can produce unacceptable results where geomet-
ric features or topologic connectivity impose limiting constraints. Collapsing a few
edges or faces in an all-hex mesh to produce degenerate hex elements may be suffi-
cient to turn an otherwise unusable mesh into an adequate mesh for computational
simulation. We propose a method for automatically generating such meshes by iden-
tifying and collapsing edges and faces to improve element quality followed by local
optimization-based smoothing. We also propose a new metric based upon the scaled
Jacobian that can be used to determine element quality of a degenerate hex element.
In addition we illustrate the effectiveness of degenerate elements in analysis and pro-
vide numerous meshing examples using the sculpt meshing procedure modified to
incorporate degeneracies.

Key words: degenerate hexahedral elements, grid-based, overlay grid, smooth-
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1 Introduction

Computational simulation in many environments prefers the tri-linear 8-
node hex element over its tetrahedron counterparts. In spite of significant
overhead required to generate an all-hex mesh versus generation of a tet mesh
of similar geometry, hex meshing remains an important requirement for many
analysts. The ability to automatically generate a quality all-hex mesh for an
arbitrary solid model has long been a major research challenge.

Many methods for fully automatic all-hex mesh generation have been pro-
posed. These methods can be classified as either geometry-first or mesh-first
approaches. The geometry-first approaches, which may include algorithms
such as mapping[3], sweeping[16], plastering[1][17], whisker weaving[20], and
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medial axis[19], involve developing a mesh using the CAD boundary repre-
sentation as a framework from which to build the nodes and elements of a
mesh to fill the geometric domain. Mesh-first approaches, such as overlay and
octree grid-based methods[11][21][5][10] first construct a space-filling grid or
mesh of nodes and elements. They then employ methods to locally modify the
mesh to capture features of the geometry and topology of the CAD model.

Where geometry-first methods such as sweeping can be successfully em-
ployed, they can result in high quality meshes. However, in practice, they
usually necessitate user interaction, sometimes requiring heroic efforts to de-
compose the model into topologically consistent pieces before meshing. For
automatic geometry-first methods such as plastering or whisker weaving, in-
terior elements may become poor or cannot be formed at all because of local
topological constraints when attempting to close a void region with all hexa-
hedral elements.

On the other hand, mesh-first methods, although having the potential
of being completely automatic, can also sometimes suffer from poor element
quality at the boundaries where geometric features and topologic constraints
can be limiting.

The goal of generating quality all-hex meshes using geometry-first and
mesh-first methods is laudable and deserves continued research. However in
practice, current automatic methods often can produce results where the vast
majority of elements are acceptable, with a small percentage that may fall
below an acceptable threshold for analysis. In these cases, additional tedious,
often manual work must be performed to clean up the mesh to improve quality,
or they may be discarded all together. We propose one possible solution where
we improve upon such meshes by incorporating a limited number of degenerate
hex elements.

The concept of a degenerate element is not new. Indeed, some finite el-
ement implementations formulate triangles as degenerated quadrilateral ele-
ments. For example Graham et. al. [4] creates degeneracies through anisotropic
refinement methods and their results show that degeneracies in the meshes
yields no degradation in the approximation properties.

For 3D hex elements, Shelton et. al. [13] also validate the use of degenerate
hex elements in analysis. They provide an exhaustive numerical exploration of
degenerated hexes and present results of patch tests that demonstrate linear
completeness of degenerate elements. They also show optimal convergence
rates for meshes containing degenerate elements and show applicability of
degenerates for solving complex problems.

It is also notable that in Lipton et.al. [7] degenerate control meshes were
explored for iso-geometric analysis using b-spline basis functions. They cite
several cases of degeneracies where patch tests were exactly satisfied for all
three polynomial orders.

Other meshing researchers have also encountered degenerate elements,
however in most cases, strategies are devised to eliminate the occurrence of
such elements. For example Schneiders [12] encounters degenerate elements
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in the course of his overlay grid algorithm, though attempts are made to get
rid of them by splitting degenerate elements into a set of valid hexes. Taghavi
[18] also attempts to eliminate degeneracies in his overlay grid procedure by
introducing a limited number of pyramid, tet or wedge shaped elements at
the mesh boundaries.

In this work, rather than eliminating degeneracies, we propose strategically
introducing a limited number of degenerate hexes to improve an otherwise
unusable or poor quality mesh. This can be accomplished by identifying poor
quality elements and performing edge and face collapse operations to define a
few degenerate hex elements within the mesh. At first glance, it may seem that
collapsing edges on a hex element would be detrimental to the mesh quality
and subsequent solution accuracy. It has been demonstrated [13], however that
incorporating a limited number of degenerate hex elements in a mesh causes
little effect on the solution accuracy and in some instances can even improve
results.

To demonstrate the effectiveness of degenerate elements, we expand upon
the author’s work, sculpt [10][9][8]. Application of degenerate elements to
sculpt meshes proves especially useful since it can be applied as a post process
procedure to an existing mesh where a small percentage of elements near the
boundaries can be improved through degeneration.

Formation of degenerate hex elements could be equally applied to ad-
vancing front hex procedures such as plastering and whisker weaving where
fronts collide and topological constraints prohibit formation of all-hex ele-
ments. These methods would however require customized rules for element
formation based on local topological constraints in order to form usable de-
generate hex elements. Indeed, initial implementations of Plastering utilized
wedges [1] and knife [2] shapes, forms of degenerate hexes, to resolve interior
voids. Recent experiments to extend this effort to incorporate more general
forms of degeneracies proved problematic. For this reason we utilize sculpt as
the target application, using edge and face collapses to define degeneracies on
an existing mesh. The proposed work could be equally applied to any existing
mesh that would benefit from local mesh quality improvement through this
same technique.

We note that for the target meshing algorithm, sculpt, and overlay grid
procedures in general, can have difficulty at sharp features and high curva-
ture. Figure 1 shows a 2-dimensional example where the boundary layer must
navigate a sharp feature resulting in poor mesh quality at the feature. Figure
2 however shows the same local mesh where edge AB has been collapsed into
a single node C. Although some of the resulting elements are now triangles,
the local mesh quality at the feature is improved. This same concept can be
extended to 3-dimensions where the quality of the hex elements surrounding
a feature may be poor. While in 2D, the resulting degenerate configuration
can only be a triangle, an edge collapse operation, such as that shown in fig-
ures 3 and 4 will generate a set of rock -shaped elements. Further edge or face
collapses can result in a wide variety of possible shapes.
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Fig. 1. Sharp geometric features can re-
sult in poor mesh quality near bound-
aries as evidenced by the elements adja-
cent edge AB.

Fig. 2. Edge AB has been collapsed into
C and results in degenerate (triangle) ele-
ments but improved quality.

Fig. 3. Initial set of hexes sharing edge
AB

Fig. 4. Edge AB has been collapsed into
C and results in degenerate (rock) ele-
ments.

In this work, we first outline the definition of degenerate hex elements and
their acceptable forms. We also propose a method for computing a modified
scaled Jacobian metric for these new element shapes. We later propose an
automatic method for identifying poor quality elements and improving them
through targeted edge and face collapse operations followed by local mesh
optimization. Examples of meshes generated using sculpt where this algorithm
has been employed are presented and their mesh quality examined. Finally
we use meshes that incorporate degeneracies in a computational simulation
and compare their accuracy to meshes that do not include degeneracies.

2 Degenerate Hexes

2.1 Degenerate Hex Classification

A standard eight node hexahedron element can be defined in terms of the
connectivity of its nodes. Indeed, many FEA file formats [15] first prescribe
a list of ordered nodes in the model, followed by the connectivity of each
individual hex element defined by the 8 ordered numerical IDs of its nodes.
The order and orientation of the nodes in a standard hex is shown in table 1
(1).



Degenerate Hex Elements 5

(1) Standard Hex
8 nodes, 6 quads
1-2-3-4-5-6-7-8

(2) Knife (3) Rock (4) Wedge (5) Axe
7 nodes 7 nodes 6 nodes 6 nodes
5 quads 4 quads, 2 tris 3 quads, 2 tris 3 quads, 2 tris

1-2-3-4-5-6-7-6 1-2-3-4-5-6-6-7 1-2-3-4-5-6-6-5 1-2-3-4-5-6-3-6

(6) Double Knife (7) Hyper Axe (8) Hyper Knife (9) Pyramid
6 nodes 6 nodes 6 nodes 6 nodes
4 quads 4 quads 3 quads, 2 tris 1 quad, 4 tris

1-2-1-3-4-5-6-5 1-2-3-4-5-6-2-6 1-2-2-3-4-5-6-5 1-2-3-4-5-5-5-5

(10) Half Knife (11) Needle (12) Standard Tet (13) Hyper Tet
5 nodes 5 nodes 4 nodes 4 nodes

2 quads, 2 tris 3 quads 4 tris 1 quad, 2 tris
1-2-2-3-4-5-2-5 1-2-3-4-2-5-2-5 1-2-2-3-4-4-2-4 1-1-2-3-1-4-1-4

Table 1. Degenerate hex element configurations. Shows 13 acceptable element
shapes that can be used as finite elements represented as degenerate hexes. Ex-
ample connectivity for each element shape is shown indicating repeated nodes in
the element connectivity to form the degeneracies.
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To avoid defining a unique element type for each permutation of degen-
eracy, we can describe each by simply repeating nodes of the standard hex.
Table 1 shows 13 different permutations of degenerate hex shapes constructed
by repeating nodes in the standard hex. This has the advantage of utilizing
existing FEA formats and can be readily incorporated into analysis codes
without extensive restructuring for new element types.

The element shapes shown in table 1 are constructed by progressively col-
lapsing edges or faces in the standard hex. Also shown for each degenerate
shape is an example connectivity, indicating where node IDs would be re-
peated. We note that these node numberings are however not unique. The
rock element shape, for example, has 12 different potential node numberings,
one for each possible edge collapse of the standard hex. We also note that
Table 1 is not exhaustive of all shapes that can be formed by edge and face
collapses from a hex element; however the shapes illustrated represent those
shapes that are most likely to be useful alternatives to an otherwise poor qual-
ity hex element. Table 1 can serve as an element zoo from which a meshing
procedure may identify and select element shapes to assist in improving the
quality of an existing mesh.

2.2 Mesh Quality of Degenerate Hexes

For our purposes, we define acceptable quality in terms of the minimum
scaled Jacobian, Js of the element. The eight scaled Jacobian values, (Js)I
at the nodes of a standard hex can be computed by taking the determinant
of its three ordered normalized edge vectors Ei,j,k as illustrated in figure 5
and equation (1). The scaled Jacobian metric for a hex is then taken as the
minimum of the eight determinant calculations as in equation (2).

Fig. 5. Ordered edges Ei, Ej , and Ek are used to compute the scaled Jacobian at
node 1

(Js)I = det
{
ÊiÊjÊk

}>
(1)

Js = min ((Js)I , I = 1, 2, ...8) (2)
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A value of Js = 1.0, indicates an ideal element where all angles are precisely
90 degrees, however a value of Js ≤ 0.0 normally indicates an unacceptable
element for computational purposes. Depending on the requirements of the
analysis, an acceptable value for scaled Jacobian can vary, but normally a
value of Js ≥ 0.2 is permissible.

Fig. 6. Calculation of the scaled Jacobian of a knife element. (Js)I for node 6, a
4-valent node, is computed as the minimum determinant of the 4 permutations of
Ei, Ej , Ek shown here. The 2-valent nodes (5 and 7) utilize the quad diagonals to
define 4 permutations of Ei, Ej , Ek.

Equation (1) requires three edges at a node, yet as can be seen in table 1,
valid degenerate hex cases can have 2, 3 or 4 edges connected to each node. In
developing our metric for these degenerate nodes, we expand on the quality
calculation techniques proposed by Knupp [6]. Just as non-simplicial elements
(hexes, quads) require multiple evaluations of nodal Jacobians to determine
the hex Jacobian, our method considers multiple combinations of equation (1)
at non 3-valent nodes to determine the minimum equivalent value for scaled
Jacobian. For example, the 7-node knife element shown in figure 6, node 6 has
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a valence of four and nodes 5 and 7 have valences of two. To accommodate a
4-valent node we propose computing the scaled Jacobian metric for the four
permutations of three edges at the node and using the minimum of the four
as the node’s contribution to equation (2). This is illustrated in figure 6 where
the four different permutations of Ei, Ej , Ek at node 6 and where right hand
rule is maintained, are shown. To accommodate a 2-valent node such as node
5 in figure 6, we treat the 2-valent node as a 4-valent using the quad diagonals
as the two additional vectors. Figure 6 also illustrates the 4 permutations of
Ei, Ej , Ek that would be used at node 5 to compute (Js)I . For other 3-valent
nodes in the element, the standard contribution to the element Js can be
computed using equation 1.

We note that equation (2) is effective in measuring and controlling dihe-
dral angles in the element, however, aspect ratio and edge lengths are not
satisfactorily managed. To control for these factors we include a size scale
factor Sf on the scaled Jacobian as shown in equation 3.

(Js)I = Sfdet
{
ÊiÊjÊk

}>
(3)

Sf =

{
es ≤ St,

es
St

es > St,
St

es

}
(4)

es = min(‖Ei‖ , ‖Ej‖ , ‖Ek‖) (5)

where St is a target edge size. In this case, we define Sf as the constant size
of one cell of the Cartesian grid used for the sculpt overlay grid. The modified
scaled Jacobian that uses equation 3 to 5 has the effect of favoring elements
that meet the size criteria as well as the angle criteria.

2.3 Degenerate Hex Construction

We propose an algorithm for automatically improving a hex mesh by iden-
tifying poor quality elements and collapsing edges or faces to create degen-
erate hexes. To begin, we first select only those elements that fall below a
user-defined Js threshold. In most cases a value Js < 0.2 is considered poor
quality and is a candidate for degeneration. From those elements we identify
candidate edge or face collapses and perform only those collapses that would
result in an improved element quality of the minimum Js for all attached
hexes or degenerate hexes.

To ensure consistency, the poorest quality elements are first sorted accord-
ing to Js, and the worst quality element is processed first. Element quality
of immediate hexes are evaluated for each candidate edge or face collapse
associated with the nodes of the hex and its immediate neighbors. Of the
candidate edge or face collapse operations at the hex, we identify the edge
or face associated with the best improvement to the minimum mesh quality
and perform that collapse. If all candidate edge or face collapses for a given
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hex will not result in improved minimum element quality for the hex and
its neighbors, then the element is left as-is. After each collapse, the element
and its neighbors are reevaluated and resorted and we continue to process
the next-to-worst element. This procedure continues until candidate collapse
operations for all hexes in the queue will no longer improve minimum mesh
quality.

Following each collapse, a local optimization based smoothing procedure
[9] is used to position the new consolidated node resulting from the collapse.
This procedure utilizes equation 3 as the objective function. It operates to
improve the worst quality element at the node based upon the new element
connectivity resulting from the edge collapse. Note that attached elements
may be either standard hexes or a combination of any of the degenerate hex
shapes illustrated in table 1. In practice, however, we see most commonly the
7-node rock and knife shapes formed as a result of this procedure.

3 Results

3.1 Meshing with Degenerate Hexes

Fig. 7. A sampling of the meshes generated using Sculpt and automatic formation
of degenerate hexes
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To test the effectivness of our algorithm, we tested over 100 single-part
CAD models. We used sculpt to mesh each of the CAD models at three
different mesh resolutions. To get a base-line, we first meshed all of the models
without use of automatic edge and face collapses. We then meshed all of the
same models again using automatic edge and face collapses and a threshold
of Js < 0.2. We illustrate a representative sample in figure 7 and their results
in table 2.

Num. Num. Initial Js Js

Model Elems Degen. Js w/Degenerates Improvement

A a trol02-6 374,454 262 -0.545849 -0.140418 0.405431

B spindle-8 43,723 18 -0.228354 0.0795396 0.3078936

C rib2a-10 11,749 66 -0.145585 0.12349 0.269075

D pl mold2-10 10,035 16 -0.154436 0.0773877 0.2318237

E thinwedge-6 358,036 3 0.187658 0.378927 0.191269

F keg ds-6 229,343 75 0.0285279 0.198239 0.1697111

G axel-8 61,826 3 0.360202 0.438501 0.078299

H valvola-8 42,210 6 0.405991 0.450391 0.0444

I railsupport-10 8,644 0 0.200045 0.200045 0.0

J pipe-6 405,596 126 0.191156 0.128739 -0.062417

Table 2. A sampling of results from Sculpt meshes. Shows scaled Jacobian Js, before
and after insertion of degenerate hexes and the associated quality improvement. Note
that Js represents the lowest quality element in the mesh

From these results we see that in most cases a very small percentage of
elements, typically well below 0.1% are converted to degenerates, when com-
pared to the total number of elements in the model. In many cases, the small
change is sufficient to increase the minimum element quality from where the
mesh would be unusable to being useful for computation. Figure 8 shows
the distribution of degenerate elements in the (C) rib2a-10 model. We ob-
serve that clusters of degenerate hexes are typically distributed throughout
the model, but most frequently at boundaries where high curvature or sharp
features are present. We note that in most cases an increase in mesh quality
is achieved, however the current state of the algorithm does not guarantee a
computable mesh in all cases. Indeed, a few rare cases showed a decrease in
element quality.

A summary of the results from a total of 447 separate test cases is shown
in tables 3 and 4. Table 3 indicates a statistically modest increase in the
minimum mesh quality of the 447 test cases when using degenerate elements.
For example, without degenerates, approximately 87.9% of the models would
mesh with Js > 0.0. This increases to 90.1% when incorporating degenerates.
Similarly, the percentage of models with Js > 0.2 increases from 61.1% to
72.0%.
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Table 4 indicates that of all cases we tested, incorporating degenerates was
able to improve close to 40% of all models. Approximately 3.5% of the cases
may have suffered a modest decrease in element quality.

Without Degenerates With Degenerates

Num. Models % Models Num Models % Models

Min Js > 0.0 393 87.9 403 90.1

Min Js > 0.2 273 61.1 322 72.0

Table 3. Shows the minimum mesh quality with and without the creation of de-
generate hexes. Based on 477 total meshes generated with sculpt [9]

No. Models % Models

Total Sculpted 447 100

Total w/ Degenerates 444 99.3

Number improved 188 39.4

Number worsened 17 3.5

Table 4. Summary of mesh quality results from 477 sculpt meshes.

Fig. 8. rib2a-10 model showing the distribution of its 66 degenerate hex elements
throughout the mesh.
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3.2 Performance of Degenerate Hexes in Analysis

To validate the performance of degenerate elements in sculpt meshes we
extend the study previously published by the author in [8]. For this study
we chose a simple torsion pin shown in figure 9. In this case we model a pin
fixed to a rigid body. We apply a rotational displacement to the end of the
pin and measure the integrated torque reaction at the rigid body. Analysis
is performed using the explicit quasi-static code, Sierra Solid Mechanics [14]
using a linear elastic material model. Rotational displacement is applied over
a 1 second time period up to a 15 degree rotation. The torsion pin itself has
a step down in radius at its center recognizing that stress concentrations will
develop at the re-entrant corner that must be handled by the sculpt mesh and
any degenerate hexes formed.

The sculpt meshes displayed in figure 10, show three different orienta-
tions of the base Cartesian grid. Although presumably ideal to align the base
Cartesian grid with the main orientation of the geometric model, there is no
guarantee that this can be accomplished in practice. As a result, we will look
at the sensitivity of the final solution to the orientation of the base Cartesian
grid. In this case we choose 10 degree increments of the Cartesian grid up to
90 degrees.

Fig. 9. Sculpt mesh of torsion pin used in linear elastic simulation

For the initial study, described in [8], the reference solution was computed
by performing a convergence study on a progressively refined mesh. We com-
pared the mesh generated with sculpt to those generated with traditional
pave-and-sweep methods. We extend that study by utilizing sculpt and incor-
porating degenerate elements as defined by the algorithm in this work.

Table 5 and figure 11 illustrate the results of the study. Of particular note
in this study is the observation that including degenerate elements in the mesh
resulted in almost no change to the overall solution when compared to not



Degenerate Hex Elements 13

Fig. 10. Cutaway view of Sculpt mesh of torsion pin showing grid oriented at 0, 30
and 50 degrees respectively.

using them. This indicates that use of degenerate elements in solution is not
detrimental to the accuracy of the solution. Indeed we observe that the effects
of changes in the orientation of the overlay grid are much more significant
than the effects of degeneracies in the mesh, although rotational effects are
still within a range of 1%.

Num. Num. Min Js Min Js Percent Error Percent Error
Test Case Elems Degen. All-Hex w/Degen. All-Hex w/Degen.

Sculpt-00 13578 6 0.211406 0.324209 2.23229% 2.22490%

Sculpt-10 14083 24 0.355677 0.369437 1.68043% 1.67992%

Sculpt-20 14313 33 0.290767 0.315983 1.55861% 1.56012%

Sculpt-30 14501 81 0.300514 0.34585 1.33490% 1.33445%

Sculpt-40 14607 84 0.280919 0.280919 1.07916% 1.07673%

Sculpt-50 14607 87 0.298308 0.330422 1.08264% 1.08068%

Sculpt-60 14501 96 0.103696 0.338327 1.33114% 1.33071%

Sculpt-70 14313 30 0.333133 0.333133 1.57603% 1.57484%

Sculpt-80 14083 12 0.354224 0.369439 1.67958% 1.67915%

Sculpt-90 13575 9 0.203566 0.342928 2.30085% 2.30525%

Table 5. Results from torsion analysis study from 10 different sculpt meshes oriented
at 10 degree intervals. Results are shown for meshes with and without degenerate
elements
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Fig. 11. Comparison of percent error between meshes with and without degenerates.
Note that observed results between two cases are almost identical.

4 Conclusions

In this work we propose using a limited number of degenerate hex el-
ements to render an otherwise unusable mesh into a satisfactory mesh for
computational simulation. We have introduced a classification of valid degen-
erate shapes and proposed a metric based on the scaled Jacobian to evaluate
their quality. A method for automatically creating degenerate elements from
an existing mesh by the use of edge and face collapses was introduced and the
method was evaluated using a wide range of CAD models. Finally the perfor-
mance of degenerates in a quasi-static analysis was evaluated and compared
to the same model without degenerates.

We noted that differences between meshes that incorporated a limited
number of degenerate hex elements performed almost identically to those
without. This observation alone is significant, as it indicates that an all-hex
mesh is not necessary to achieve satisfactory results. The Jacobian remains
an important measure of mesh performance in analysis, however we have ob-
served that provided Jacobian is adequate, that the element shape is not as
significant. This observation has major implications on mesh generation al-
gorithm development that has for many years focussed on creating a quality,
all-hex mesh.

The method we have proposed for creation of degenerate elements is still a
work in progress. The current results show a statistically significant increase
in element quality over the range of CAD models tested. We have however
identified specific issues that can be improved in the course of this study and
will continue to make adjustments. We recognize the need to better incor-
porate degenerate elements in an optimization-based smoothing scheme that
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includes untangling of negative Jacobian elements, a factor that may be caus-
ing some observed deterioration in element quality in a few cases. Additionally
the modification of the algorithms to be used in a parallel message passing
environment must be addressed. Higher degree forms of degenerate elements
were also not studied and would be an interesting extension to this work.

We recognize that use of degenerate hex elements in analysis may not be
supported in many analysis codes. The authors have the benefit of working
directly with the developers of the Sierra Mechanics analysis tools [14] who
have made appropriate modifications to support degenerate elements. We note
however that these modifications [13] were minimal as in most cases they can
be treated as a standard linear hex with repeated nodes in their connectivity.
In order for the use of degenerate elements to continue to gain acceptance,
it will be necessary for major vendors and developers of analysis tools to
support the use of degenerates. The benefits however would be substantial,
where users could take advantage of fast, automatic hex meshing technologies
reducing the need for manual methods that currently require time-consuming
decomposition and geometry clean-up.
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