

13th ICCRTS
“C2 for Complex endeavors”
Automated Decision Support in a Complex
Information Space.

Topic 4: Cognitive and Social Issues

Topic 8: C2 Architectures

Topic 9: Collaborative Technologies for Network-Centric Operations

Michael Senglaub, PhD
Sandia National Laboratories
PO Box 5800 MS 1161
Albuquerque, NM 87185
505-844-9244
mesengl@sandia.gov

Automated Decision Support in a Complex Information Space.

The trend in combat C2 as well as emergency management situations is to increase the flow of data into command centers. These data flows span dimensions of discipline, multi-national and government jurisdictions, with redundant sources, multiple protocol, and of varying levels of temporal importance. One problem facing the decision makers is a failure to transform the data into information and knowledge prior to being integrated into the decision process, adding significant cognitive loads to the decision maker, and overwhelming the process, leading to sub-optimal decisions. What has/is being developed at Sandia is a decision support capability that supports data fusion with Peircean based reasoning and a mathematically grounded knowledge representation technology. The current version is a “flat” reasoning system with an integrated inductive learning engine, and an abductive hypothesis generation engine coupled to a formal concept analysis knowledge representation system. The integrated system has been demonstrated in an intel analysis scenario and is being augmented to support a forensic analysis function. The architecture of the system will support extensions into hierarchical reasoning enabling the system to cross information blocks to do analogical reasoning as well as draw inferences that reflect a greater global awareness of developing situations.

Proposed Outline

1. Introduction

Philosophical heuristics vs Cognitive “physics”
Decision Making Paradigm

2. Knowledge Representation

Formal Concept Analysis definitions and limitations
Ordered Set theoretic basics
Extensions of the theory to support decision making
Predicates to enable sub-domain reasoning
Fuzzy set integration for real valued attributes

3. Peircean “Method of Scientific Inquiry”

4. Inductive Learning

Definitions
Inductive reasoning and Finn’s Method
Inductive Learning and the ability to discover patterns in data

5. Abductive Reasoning

Definitions as defined by C.S. Peirce
Mathematical basis for abduction in a FCA architecture
Construction of the “Belief state”, the mathematical basis of situational awareness

6. Intel Analysis Results

Application of the Peircean Decision Aid (PDA) on a terrorism scenario.
Incident, communications, transaction, and suspects databases.
Short discussion of the forensics application.

7. Reasoning Extensions

Current temporal reasoning and extension
Hierarchical reasoning extension
Scalability potential
Deductive-Inductive “Severe Testing” extension

8. Observations and Conclusions to date