
CLUSTERING OF LARGE EVENT SETS USING DELAUNAY TESSELLATIONS AND K-MEDOID OPTIMIZATION
James R. Hipp and Christopher J. Young, Sandia National Laboratories

Sponsored by National Nuclear Security Administration, Office of Nonproliferation Research and Engineering, Office of Defense Nuclear Nonproliferation, Contract No. DE-AC04-94AL85000

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Many technical fields such as spatial data mining and operations research are interested in the
problem of clustering arbitrary unstructured geo-referenced data sets. Most of these spatial
clustering techniques make use of data proximity. In these methods proximity is based on a
selected Euclidean metric which attempts to capture the spatial autocorrelation and near
association of neighboring spatial data. Two general approaches are typically followed to form the
clusters: a) a bottom-up approach which agglomerates spatial points to form clusters based on
their relative nearness to one another; and b) a top-down approach which attempts to partition a
heterogeneous data set into smaller more similar groups.

Of particular interest for clustering seismic events are top-down medoid-based clustering
methods. In these methods the point representing an arbitrary cluster must be chosen from the set
of events forming the cluster. Other methods include those based on discovering a mean, or
average, location within the cluster to use as a cluster representative. Mean-based methods are
generally more popular and possess fast solution algorithms of order O(n) time. However, the
calculated mean representative locations are not necessarily near the cluster center when outliers
are involved in the calculation and suffer many other statistical bias and consistency problems. A
good description of the advantages and disadvantages of mean- and medoid-based methods can
be found in Estivill-Castro et al. (2001).

The medoid (or K-Medoid where K refers to the number of clusters) approach suffers two
primary drawbacks. The first, which it shares with mean-based methods, is that the number of
clusters must be defined in advance. The second is that for large data sets containing up to n
points the solution times are of order O(n2).

In this paper we shall show a method that reliably calculates the number of required clusters and
that utilizes spatial based proximity information embedded within the Delaunay tessellation
(Delaunay, 1934) of the event set to improve performance to O(n log n). Since code to construct a
spherical Delaunay tessellator had already been developed for the GNEMRE program, only the
K-Medoid clustering algorithm needed to be developed.

Assume an initial distribution of geo-referenced events located in an unstructured fashion
anywhere on the surface (or near surface) of the Earth. Our goal shall be to find clustered sets of
those events that share close spatial proximity and are no more distant from one another (in a
cluster) than some user prescribed distance Dmax. We shall call Dmax the desired cluster size
parameter. The set of discovered clusters shall be returned as an array of cluster objects each
containing a list of one or more events, which defines the cluster’s event set, and a single event,
the cluster representative, which signifies the best characterization of the cluster.

Before proceeding further we shall define the concepts of an event group (i.e. cluster), the
maximum span of a cluster, and a consistent cluster which will be used repeatedly in the
discussion that follows:

• A group of events (or event group) shall be defined such that for any event contained in
the group there is a closest neighbor event, also contained in the group that is never
further away than some distance Dmax. Or conversely, two event groups are distinct if all
events in the first group are further away than Dmax from all events in the second group.

• The maximum span of a cluster (event group) is the furthest distance between any two
points in the cluster, which by definition is less than or equal to Dmax.

• A cluster is said to be consistent if all events contained by an arbitrary cluster are closer
to the cluster’s representative event than to any other representative in the remaining set
of adjacent clusters of the event group.

The clustering approach defined in this paper begins by identifying isolated event groups from
the initial set of globally distributed events. Next, each event group is processed sequentially by
sub-dividing the group into an initial “best” guess of consistent clusters where the number of
clusters is chosen in a minimalist way while still guaranteeing that the maximum span of each
cluster is not violated. Finally, the group is processed using a top-down k-medoid algorithm to
find the best set of cluster representatives for the group.

The remaining pages of this paper shall describe the process in reverse order. First we will
describe the k-medoid optimization assuming an event group of an initial set of clusters has been
found and representatives have been assigned. Next we will return to describe the method for
forming the initial best guess of clusters and their representatives given an arbitrary overall event
group. Finally, we will describe the process for forming event groups given the initial distribution
of globally geo-referenced events. The actual process includes one additional step after k-medoid
optimization to handle the rare small fix-ups needed where poor quality clusters are formed and
events are assigned to inappropriate clusters, but we will not describe that here.

Cluster Representatives

The K-Medoid clustering optimization algorithm attempts to improve an initial clustering definition for an event
group that has been decomposed into a consistent set of initial “best” guess clusters. Figure 1 illustrates an example
event group composed of 4 initial clusters whose initial representatives are outlined in red. The sequence of
optimization steps for this example are shown in Figure 2a-d. The optimization heuristic operates by iteratively
discovering a new set of representatives for the clusters that globally minimizes

  





1

0

pN

i
kiidwCM

Figure 1. Event groups
initial cluster definition.

where the sum is taken over all events (Np) in the event group. The value dki represents the distance between the ith event and the kth cluster
representative. The weights can be used to influence the minimization by defining a criterion that represents something other than proximity. For
purposes of the remainder of this paper the weights will be assumed to be one for all events such that M(C) is strictly proximity based.
We intend to find the global minimum subject to two constraints:
a) no event-to-event distance span in the cluster shall exceed the pre-defined maximum distance, Dmax, and
b) no two clusters from the group can be combined to form a new cluster whose maximum span is also < Dmax.

The first of these constraints is simply the definition, previously given, for the maximum allowable span of any cluster. The second definition is a
similar attempt to control the minimum size of a cluster so that is not significantly smaller than Dmax. The first constraint is used during the
optimization to prohibit new representatives from being formed that will cause an excessive span even if the value of M(C) is smaller given the new
representative for some cluster. The second constraint ensures that adjacent clusters that can be represented by a single cluster, assuming the first
constraint is not violated, are merged into a single cluster reducing the total number of clusters in the group by one.

With the aforementioned constraints and definitions we define the K-Medoid optimization as follows:
Given an initial set of representative clusters, fixed in number, from an arbitrary event group, exchange non-representative events with representatives
until a reduced value for M(C) is discovered. When a more optimum event is discovered swap the old representative with the new event and continue
with the next event in the group repeating the test. Continue until none of the non-representative events reduces the value of M(C) more than the
current set of representatives subject to the previously defined constraints.

Cluster j

Representative j (Cj)
Event ni

-
+

Cluster j
Representative j (Cj)

Event na

Cluster j’

Cluster Representatives

Representative j’ (Cj’=i)

Cluster j

Representative j (Cj)

a) b)

c)d)

Figure 2. An example of the K-medoid optimization process.

This net change in M(C) is shown in Figure 2b. Because event na lies closer to ni than its old representative (that is why it is being transferred) the
net result is always negative. For this reason, events of type a) that occur in a k-medoid swap tests always produce a reduction in M(C).
For events of type b) we need to examine the contributions to the change in M(C) from all of the events that reside in the current cluster j. In our
example problem shown in Figure 2c, four of the original cluster j events will remain in cluster j’, while two of the original events will be moved to
nearby adjacent clusters. The net change in the value of M(C) is caused by the loss of all contributions of cluster j events with the cluster j
representative (red arrows) and a gain due to the reattachment of cluster j events with the cluster j’ representative or other representatives other than j’
(blue arrows). We can write these contributions over all cluster j events as

where b is taken over all original events of cluster j. The new reassignment cluster indices are contained in m(b) for each event in cluster j.
The total change in M(C) is given by summing changes from both case a) and case b) which gives

If the change in dM(C) is < 0.0 then event ni represents a more optimum cluster representative than does the original cluster representative Cj and a
swap is performed. This case is illustrated in Figure 2d. If, however, dM(C) is > 0.0 then representative Cj is better and the swap is not performed. In
either case the algorithm advances to the next event ni for further testing. The algorithm halts when no further swapping occurs after a complete pass
through all events in the group.

Figure 2a shows an arbitrary iteration of the algorithm where
event ni is to be tested to see if it is a better representative for
cluster j than its current representative. The change in M(C)
caused by replacing the current representative of cluster j with
event ni is composed of two components. These components
include:
a) Those events that currently belong to clusters other than j but
are transferred to cluster j’ when event ni becomes its
representative (let j’ be the jth cluster when event ni is made its
representative); and
b) The original events of cluster j which may remain in cluster j’
or may be transferred to other clusters when event ni becomes the
new representative.

Let’s examine events of type a) first. For our example only one
event, na, is transferred from a non-j cluster to cluster j’ when ni

becomes the representative of cluster j’. The net change in M(C)
as a result of the transfer of na into cluster j’ is composed of the
additional contribution of assigning na into cluster j’ minus the
removal of the contribution from the cluster that currently
contains na. We’ll let r(a) be the index of the cluster containing na

before the swap.

     





  jm CCjm nnnnwddw
)()(

    





)()()(ljjm ddwddwCM

As previously discussed the k-medoid optimization is constrained to
avoid clusters with spans that exceed Dmax or spans that are
unnecessarily small (much less than Dmax/2). In the first case we
enforce the constraint by ensuring that representative swaps are not
performed during optimization if the swap results in a cluster whose
span exceeds Dmax. Figure 3 illustrates a case of two clusters before
testing an event as a replacement representative for the topmost cluster.
Notice that both clusters have a span that is less than Dmax before the
test.

Following the test the event is found to reduce M(C) (assume for the
sake of the example) which results in the migration of an event from
the cluster containing the test event to the lowermost cluster in order to
ensure cluster consistency requirements (events must reside in the
cluster for which they are closest to the cluster’s representative).
However, as shown in Figure 4 the event migration results in a span
that exceeds Dmax. For this case the swap is disallowed and the original
configuration before the test is restored.
The second constraint is satisfied by attempting to merge adjacent
clusters with one-another during the optimization process. If two
clusters can be merged, as shown in Figure 5, where the resulting
merger produces a new cluster whose span is still less than Dmax then
the merger is processed. The net result reduces the cluster count by one
which generally increases the intra-cluster spacing.

Span = Dmax

Before Test
Span Ok

Test
Representative

Fig 3. Adj. cluster pairs before
test representative swap.

Span > Dmax

After Test
Invalid Span

Representative Swap is Not Performed

Point Changes
Cluster
Assignment

New
Representative

Span Ok
Representatives Are Valid

Span Ok
Reduced Cluster Count By One

Merge Two
Clusters
Into One

Fig 4. After representative swap
resulting in an excessive span.

Figure 5. Adjacent cluster merge reducing the cluster count by one.

In this section we shall go back to the beginning to answer the question of how to form an initial set of clusters from a given event group. It is this
initial cluster definition upon which the k-medoid algorithm operates.

For our specific problem we are interested in determining the number of clusters necessary to represent the events in a group given some desired
size, Dmax, for each cluster. Here we shall define a method of approximating the cluster count and initial distribution using a medial axis sub-division
scheme. As before, let the span of a cluster be the largest distance between any two events in the cluster. If the span of a cluster exceeds Dmax then
sub-divide the cluster into two new sub-clusters. In turn, evaluate each of the new sub-cluster spans. If one or both still exceed Dmax then one or both
are also split into two new sub-clusters. This process is repeated recursively until the newly formed sub-cluster pairs are defined by a set of events
whose span is less than or equal to Dmax.
The best way to sub-divide the events into sub-cluster pairs is to simply split the clusters event set along a line (or plane in 3-space) that is
orthogonal to the line (or plane) that defines the clusters span and positioned so that it contains the span’s mid-point. This new splitting axis is called
the medial axis of the span. The sub-division process is illustrated in Figures 6a through 6c.

Initial Event Group Point Set and
Maximum Span Definition

Spans Still Excessive … Perform
Medial Axis Subdivision on Both
Clusters Creating Four New Clusters
…Recheck Spans

Span is Excessive … Perform Medial
Axis Subdivision Creating Two New
Clusters … Recheck Spans

Span
Medial Axis

a) b) c)

Figure 6. Medial-axis sub-division of an initial event group into 4 sub-clusters all of whose spans are < Dmax.

The span axes are denoted in blue while the medial axes are shown in red. Notice that the medial axis effectively sub-divides the cluster into two
new clusters that lie on opposite sides of the medial axis. A simple test (scalar triple product in 3-space) can be used to determine which side of the
medial axis an event lies. Events lying on either side of the medial axis are inserted into two new sub-clusters and the original cluster is removed.
In the example above the original set of events in the group are subdivided into 4 sub-clusters whose spans are all less than Dmax.

Initial Cluster
Representatives

Reassigned
Events

Figure 7. a) Event group initial cluster
representative formations. b) Event reassignment
required to preserve cluster consistency.

The previously described decomposition of the original event group into a set of clusters
whose spans are all less than Dmax determines the initial number of clusters that will be
provided to the k-medoid clustering algorithm. However, it has not defined the best
characteristic representative for each cluster which must be accomplished before performing
the k-medoid optimization. This is done by simply performing a local optimization test for
M(C) on each event in each cluster. The one that minimizes M(C) for each cluster is chosen as
its representative. Figure 7a shows the result given the final clusters shown in Figure 6 above.
The final step before entering the k-medoid optimization algorithm is to ensure that the initial
clusters are all consistent. This means that we must check each cluster to ensure that all events
owned by the cluster are closest to that cluster’s representative than to any other
representative in the remaining clusters. For our example three events are found to be erroneously assigned within other clusters and must be
reassigned. These reassigned events are shown in Figure 7b.

We can now answer the final question of how to efficiently construct event groups given the raw event data
distributed in an unstructured manner over the entire Earth’s surface. Here we shall make direct use of the nearest
neighbor information contained in a Delaunay tessellation of the raw event positions.

Since we already have code to construct a spherical Delaunay tessellator we need only input the event positions

and build the tessellation. Figure 8 shows the resultant edge connectivity between ISC catalog events for the year
2000 with depth <= 33 km and mb >=3.0. The input set contains 22,766 events. The small white square near
Greece will be shown in the remaining figures to illustrate the process steps.
Event groups are defined by finding connected sets of events where the distance between neighboring events in
the connected set is less than Dmax. This can be accomplished in order O(n) time using the topology of the
Delaunay tessellation. The algorithm simply picks the first unmarked node (event) in the tessellation. By marking
we are simply setting a flag to indicate that the node has been visited. If the node is already marked we proceed to
the next node. This continues until no unmarked nodes remain.
Any unmarked nodes are processed by first marking the node as having been visited and adding it into a new
event group. We then add the node to a stack. Next the algorithm enters a loop processing all nodes in the stack
until it is empty. The stack processing begins by first popping the next node off of the stack which is taken as the
current process node. Then we loop over each edge of the node (the tessellation topology stores this information)
and check the edge length to see if it is less than or equal to Dmax. If it is and the node opposite the current process
node on the edge has not been flagged as visited we mark it as such and add that opposite node to the stack and to
the current event group (a cluster). This continues for each edge of the current process node. Finally the algorithm
checks to see if any nodes remain in the stack and loops to obtain the next current process node if the stack is not
empty.
When the stack is empty the algorithm returns to the outer loop over all tessellation nodes to find the next

unmarked node. When no unmarked nodes remain the event groups have all been discovered. Each group consists
of one or more events. We can best visualize these by turning off all edges that exceed Dmax. This is shown in
Figure 9 for a Dmax value of ½ degree. The groups are highlighted with an outlined yellow curve to aid in their
visualization.

Fig 8. 22,766 spherically tessellated ISC events.

Fig 9. Local event groups and isolated events in the zoom region.

Fig 10. Magnified region depicting final cluster formation following group
formation, initial cluster definition, and k-medoid optimization. White circles
indicate cluster representatives. Red circles are Dmax in diameter centered on
cluster max spans. For clarity, single event groups are shown as white diamonds.

Event groups whose total span is less than Dmax form completed clusters. Groups whose span
exceeds Dmax must be processed by the medial-axis sub-division algorithm to form initial consistent
clusters which are further processed by the k-medoid clustering algorithm to find the best set of
representatives in the group.

In Figure 10 all isolated events and groups of 2 events are immediately considered as completed.
The remaining groups must be processed by the medial-axis subdivision and k-medoid algorithms.
The result of that processing is shown in Figure 11. The cluster representatives are outlined in white
while the clusters are signified by the red circles centered on the maximum span of each cluster.

a) b)

The final total clustering algorithm can be summarized as follows:
1) Tessellate raw events globally on a sphere
2) Decompose events into groups whose neighbor separation is < Dmax

3) Move groups whose span is < Dmax into a completed cluster list (includes
isolated events)

4) For each remaining incomplete event group
{

>>Decompose group into a set of sub-clusters using the medial-axis
sub-division algorithm
>>Peform k-medoid representative optimization on entire group
>>Fix poor quality clusters and event assignments
>>Add each optimized sub-cluster to the completed cluster list

}

REFERENCES
Estivill-Castro, V., Houle, M. E., (2001), Robust Distance-Based Clustering with Applications to Spatial Data Mining, Algorithmica, 30(2):216-242.
Delaunay, B.N., (1934), Sur la Sphere Vide, Bull. Acad. Science USSR VII: Class. Sci. Math., 793-800.

SAND2007-6027C

