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Introduction

Many technical fields such as spatial data mining and operations research are interested in the
problem of clustering arbitrary unstructured geo-referenced data sets. Most of these spatial
clustering techniques make use of data proximity. In these methods proximity is based on a
selected Euclidean metric which attempts to capture the spatial autocorrelation and near
association of neighboring spatial data. Two general approaches are typically followed to form the
clusters: a) a bottom-up approach which agglomerates spatial points to form clusters based on
their relative nearness to one another; and b) a top-down approach which attempts to partition a
heterogeneous data set into smaller more similar groups.

Of particular interest for clustering seismic events are top-down medoid-based clustering
methods. In these methods the point representing an arbitrary cluster must be chosen from the set
of events forming the cluster. Other methods include those based on discovering a mean, or
average, location within the cluster to use as a cluster representative. Mean-based methods are
generally more popular and possess fast solution algorithms of order O(n) time. However, the
calculated mean representative locations are not necessarily near the cluster center when outliers
are involved in the calculation and suffer many other statistical bias and consistency problems. A
good description of the advantages and disadvantages of mean- and medoid-based methods can
be found in Estivill-Castro et al. (2001).

The medoid (or K-Medoid where K refers to the number of clusters) approach suffers two
primary drawbacks. The first, which it shares with mean-based methods, is that the number of
clusters must be defined in advance. The second is that for large data sets containing up to »
points the solution times are of order O(n?).

In this paper we shall show a method that reliably calculates the number of required clusters and
that utilizes spatial based proximity information embedded within the Delaunay tessellation
(Delaunay, 1934) of the event set to improve performance to O(n log n). Since code to construct a
spherical Delaunay tessellator had already been developed for the GNEMRE program, only the
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" K-Medoid Optimization

The K-Medoid clustering optimization algorithm attempts to improve an initial clustering definition for an event _ ©
group that has been decomposed into a consistent set of initial “best” guess clusters. Figure 1 illustrates an example
event group composed of 4 initial clusters whose initial representatives are outlined in red. The sequence of
optimization steps for this example are shown in Figure 2a-d. The optimization heuristic operates by iteratively
discovering a new set of representatives for the clusters that globally minimizes
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where the sum is taken over all events (V) in the event group. The value d,; represents the distance between the i™ event and the k™ cluster
representative. The weights can be used to influence the minimization by defining a criterion that represents something other than proximity. For
purposes of the remainder of this paper the weights will be assumed to be one for all events such that M(C) is strictly proximity based.

We intend to find the global minimum subject to two constraints:

a) no event-to-event distance span in the cluster shall exceed the pre-defined maximum distance, D,,,,, and

b) no two clusters from the group can be combined to form a new cluster whose maximum span is also <D,,,,,

The first of these constraints is simply the definition, previously given, for the maximum allowable span of any cluster. The second definition is a
similar attempt to control the minimum size of a cluster so that is not significantly smaller than D,,. The first constraint is used during the
optimization to prohibit new representatives from being formed that will cause an excessive span even if the value of M(C) is smaller given the new
representative for some cluster. The second constraint ensures that adjacent clusters that can be represented by a single cluster, assuming the first
constraint is not violated, are merged into a single cluster reducing the total number of clusters in the group by one.

With the aforementioned constraints and definitions we define the K-Medoid optimization as follows:

Given an initial set of representative clusters, fixed in number, from an arbitrary event group, exchange non-representative events with representatives
until a reduced value for M(C) is discovered. When a more optimum event is discovered swap the old representative with the new event and continue
with the next event in the group repeating the test. Continue until none of the non-representative events reduces the value of M(C) more than the
current set of representatives subject to the previously defined constraints.

Cluster Representatives
Figure 1. Event groups
initial cluster definition.
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As previously discussed the k-medoid optimization is constrained to
avoid clusters with spans that exceed D,,, or spans that are
unnecessarily small (much less than D_/2). In the first case we
enforce the constraint by ensuring that representative swaps are not
performed during optimization if the swap results in a cluster whose
span exceeds D,_... Figure 3 illustrates a case of two clusters before
testing an event as a replacement representative for the topmost cluster.
Notice that both clusters have a span that is less than D _,, before the
test.

Following the test the event is found to reduce M(C) (assume for the

sake of the example) which results in the migration of an event from
the cluster containing the test event to the lowermost cluster in order to
ensure cluster consistency requirements (events must reside in the
cluster for which they are closest to the cluster’s representative).
However, as shown in Figure 4 the event migration results in a span
that exceeds D,,,,. For this case the swap 1s disallowed and the original
configuration before the test is restored.
The second constraint is satisfied by attempting to merge adjacent
clusters with one-another during the optimization process. If two
clusters can be merged, as shown in Figure 5, where the resulting
merger produces a new cluster whose span i1s still less than D, then
the merger is processed. The net result reduces the cluster count by one
\ Which generally increases the intra-cluster spacing.
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neighbor information contained in a Delaunay tessellation of the raw event positions.

Greece will be shown in the remaining figures to illustrate the process steps.

the connected set is less than D

max*

the next node. This continues until no unmarked nodes remain.

and check the edge length to see if it is less than or equal to D,

empty.

We can now answer the final question of how to efficiently construct event groups given the raw event data
distributed in an unstructured manner over the entire Earth’s surface. Here we shall make direct use of the nearest

Since we already have code to construct a spherical Delaunay tessellator we need only input the event positions

and build the tessellation. Figure 8 shows the resultant edge connectivity between ISC catalog events for the year
2000 with depth <= 33 km and m, >=3.0. The input set contains 22,766 events. The small white square near

Event groups are defined by finding connected sets of events where the distance between neighboring events in
This can be accomplished in order O(n) time using the topology of the
Delaunay tessellation. The algorithm simply picks the first unmarked node (event) in the tessellation. By marking
we are simply setting a flag to indicate that the node has been visited. If the node is already marked we proceed to

Any unmarked nodes are processed by first marking the node as having been visited and adding it into a new
event group. We then add the node to a stack. Next the algorithm enters a loop processing all nodes in the stack
until it 1s empty. The stack processing begins by first popping the next node off of the stack which is taken as the
current process node. Then we loop over each edge of the node (the tessellation topology stores this information)
. If it is and the node opposite the current process
node on the edge has not been flagged as visited we mark it as such and add that opposite node to the stack and to
the current event group (a cluster). This continues for each edge of the current process node. Finally the algorithm
checks to see if any nodes remain in the stack and loops to obtain the next current process node if the stack is not

When the stack is empty the algorithm returns to the outer loop over all tessellation nodes to find the next
unmarked node. When no unmarked nodes remain the event groups have all been discovered. Each group consists
of one or more events. We can best visualize these by turning off all edges that exceed D,,,,

. This is shown in

"Event Group Initial Cluster Definition

In this section we shall go back to the beginning to answer the question of how to form an initial set of clusters from a given event group. It is this
O initial cluster definition upon which the k-medoid algorithm operates.
For our specific problem we are interested in determining the number of clusters necessary to represent the events in a group given some desired

Figure 2a shows an arbitrary iteration of the algorithm where
event n; is to be tested to see if it is a better representative for a
) cluster j than its current representative. The change in M(C)
caused by replacing the current representative of cluster j with
event n; is composed of two components. These components

Figure 9 fora D,

visualization.
Event groups whose total span is less than D, . form completed clusters. Groups whose span

exceeds D, . must be processed by the medial-axis sub-division algorithm to form initial consistent

Eventn;

v Representative j (C)) value of '2 degree. The groups are highlighted with an outlined yellow curve to aid in their Fig 8. 22,766 spherically tessellated ISC events.

\K—Medoid clustering algorithm needed to be developed. Yy

" Algorithm Overview
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clusters which are further processed by the k-medoid clustering algorithm to find the best set of

Assume an initial distribution of geo-referenced events located in an unstructured fashion include: © o o size, D, ., for each cluster. Here we shall define a method of approximating the cluster count and initial distribution using a medial axis sub-division el
anywhere on the surface (or near surface) of the Earth. Our goal shall be to find clustered sets of ) Those events that currently belong fo clusters other than / but _ © o o ® e o scheme. As before, let the span of a cluster be the largest distance between any two events in the cluster. If the span of a cluster exceeds D, , then reIpr;s.entatrifgs irll _thel grodup. . s g dered eted
those events that share close spatial proximity and are no more distant from one another (in a ate transferred fo clusier j when event m. becomes s ) © o e sub-divide the cluster into two new sub-clusters. In turn, evaluate each of the new sub-cluster spans. If one or both still exceed D, then one or both n Figure 10 all isolated events and groups of 2 events are immediately considered as completed.
cluster) than some user prescribed distance D,,,. We shall call D, . the desired cluster size i o o are also split into two new sub-clusters. This process is repeated recursively until the newly formed sub-cluster pairs are defined by a set of events The remaining groups must be processed by the medial-axis subdivision and k-medoid algorithms.

representative (let j’ be the jth cluster when event n; is made its ©
representative); and

b) The original events of cluster j which may remain in cluster j’ Cluster j* Representative j* (C/=i)  C)
or may be transferred to other clusters when event n; becomes the D/(

The result of that processing is shown in Figure 11. The cluster representatives are outlined in white
while the clusters are signified by the red circles centered on the maximum span of each cluster.

parameter. The set of discovered clusters shall be returned as an array of cluster objects each Cluster Representatives
containing a list of one or more events, which defines the cluster’s event set, and a single event,
the cluster representative, which signifies the best characterization of the cluster.

Before proceeding further we shall define the concepts of an event group (i.e. cluster), the

whose span is less than or equal to D,,,,...
The best way to sub-divide the events into sub-cluster pairs is to simply split the clusters event set along a line (or plane in 3-space) that is
orthogonal to the line (or plane) that defines the clusters span and positioned so that it contains the span’s mid-point. This new splitting axis is called
the medial axis of the span. The sub-division process is illustrated in Figures 6a through 6c¢.

Cluster j
v Representative j (C))

maximum span of a cluster, and a consistent cluster which will be used repeatedly in the new represerrtatrve. © Medial Axis
: - Let’s examine events of type a) first. For our example only one ® @
discussion that follows: : yp o p 3 y o > > ® ®
« A group of events (or event group) shall be defined such that for any event contained in event, n,, is transferred from a non; el’uster to cluster j” when n, = T e N 7 o °e © o _, =
the group there is a closest neighbor event, also contained in the group that is never becomes the representative of cruster] ' Theﬂet change in M(C) ) o OO @) — e Z e ° ° o °
further away than some distance D,,,.. Or conversely, two event groups are distinct if all as a result of th? trensfer of 71, 1010 clusj[er] 1S Coml?,ose_d of the o O 0 ¢ e g0 . Spans Still Excessive ... Perform
events in the first group are further away than D, from all events in the second group. additional contribution .Of assigning 7, into cluster j” minus the o o o O | Cj[ IOE (G Point Set and : . . Medial Axis Subdivision on Both . . . .
. The maximum span of a cluster (event group) is the furthest distance between any two removal of the contribution from the cluster that currently a) nitiat Event Lroup Foint Set an ) Span is Excessive ... Perform Medial c) Clusters Creating Four New Clusters Fig 9. Local event groups and isolated events in the zoom region.

Maximum Span Definition Axis Subdivision Creating Two New

Clusters ... Recheck Spans
Figure 6. Medial-axis sub-division of an initial event group into 4 sub-clusters all of whose spans are<D,, .

The span axes are denoted in blue while the medial axes are shown in red. Notice that the medial axis effectively sub-divides the cluster into two
new clusters that lie on opposite sides of the medial axis. A simple test (scalar triple product in 3-space) can be used to determine which side of the
medial axis an event lies. Events lying on either side of the medial axis are inserted into two new sub-clusters and the original cluster is removed.
In the example above the original set of events in the group are subdivided into 4 sub-clusters whose spans are all less than D, ,,

The previously described decomposition of the original event group into a set of clusters ©

contains n,. We’ll let r(a) be the index of the cluster containing n,
before the swap.

This net change in M(C) is shown in Figure 2b. Because event n, lies closer to »; than its old representative (that is why it is being transferred) the
net result is always negative. For this reason, events of type a) that occur in a k-medoid swap tests always produce a reduction in M(C).
For events of type b) we need to examine the contributions to the change in M(C) from all of the events that reside in the current cluster j. In our
example problem shown in Figure 2c, four of the original cluster j events will remain in cluster j’, while two of the original events will be moved to
nearby adjacent clusters. The net change in the value of M(C) is caused by the loss of all contributions of cluster j events with the cluster j

points in the cluster, which by definition is less than or equal to D,,,,. ...Recheck Spans

. A cluster is said to be consistent if all events contained by an arbitrary cluster are closer
to the cluster’s representative event than to any other representative in the remaining set
of adjacent clusters of the event group.

The clustering approach defined in this paper begins by identifying isolated event groups from
the initial set of globally distributed events. Next, each event group is processed sequentially by
sub-dividing the group into an initial “best” guess of consistent clusters where the number of

Figure 2. An example of the K-medoid optimization process. i i i
The final total clustering algorithm can be summarized as follows:

1) Tessellate raw events globally on a sphere

2) Decompose events into groups whose neighbor separation is <D,

3) Move groups whose span is <D, .. into a completed cluster list (includes
isolated  events)

4) For each remaining incomplete event group

- - SESNR - - - - tative (red arrows) and a gain due to the reattachment of cluster j events with the cluster j’ representative or other representatives other than j’ ® g

clusters is chosen in a minimalist way while still guaranteeing that the maximum span of each fepresen ) el . L .

e TR y wil g P gt ; A Pl o (blue arrows). We can write these contributions over all cluster j events as Whoee spans are all less.than Dma{c determrrres the initial nurnber of clusters that will be ° oo > TBloesis e Srou il @ 85 P sl nsis o malands
clustet 15 hot violated. Fihally, the group Is processed using a top-down k-medold algorithm to provided to the k-medoid clustering algorithm. However, it has not defined the best N e
ﬁnrcrlhthe best‘set of cluster ;elilresentatlve; fﬁréhe g_rlguP'h , der. Fi " Z Wﬁ( m(B)B ]ﬁ) ZWB (j”ﬁ e | T ‘”ﬁ — e, ) characteristic representative for each cluster which must be accomplished before performing ~>Peform k-medoid representative optimization on entire group

e remaining pages of this paper shall describe the process in reverse order. First we wi - o . - - e =

describe the k—rri:clljoi% optimizatilz)rf assuming an event grfup of an initial set of clusters has been where b is taken over all original everlts of cluster Jj. The new reassrgnment cluster indices are contained in m(b) for each event in cluster ;. the k-medoid optimization. This is done by Slmpl_y _Pe_rformmg a local optimization test for ™ fensenod g J >>Fix poor quality clusters and event assignments
found and ati have b oned. Next 11 return to describe th thod f The total change in M(C) is given by summing changes from both case a) and case b) which gives M (C) on each.event. in each cluster. The one thet minimizes M(C) for each eluster 1s chosen as letlal C'ﬁﬁer egj;ﬁge Fig 10. Magnified region depicting final cluster formation following group >>Add each optimized sub-cluster to the completed cluster list

ound and representatives have been assighed. Next we will return 1o describe the method 1ot its representative. Figure 7a shows the result given the final clusters shown in Figure 6 above. epresentatives

formation, initial cluster definition, and k-medoid optimization. White circles )
indicate cluster representatives. Red circles are D, . in diameter centered on
@ster max spans. For clarity, single event groups are shown as white diamonds.

The final step before entering the k-medoid optimization algorithm is to ensure that the initial Figure 7. a) Event group initial cluster
clusters are all consistent. This means that we must check each cluster to ensure that all events representative formations. b) Event reassignment
owned by the cluster are closest to that cluster’s representative than to any other required to preserve cluster consistency.
representative in the remaining clusters. For our example three events are found to be erroneously assigned within other clusters and must be
reassigned. These reassigned events are shown in Figure 7b.

- l(a)a)

SM(C) = Zwﬁ(w d g )+ Zw(

If the change in dM(C) i1s < 0.0 then event n, represents a more optlmum cluster representative than does the original cluster representative C; and a
swap is performed. This case is illustrated in Figure 2d. If, however, dM(C) is > 0.0 then representative C; is better and the swap is not performed. In
either case the algorithm advances to the next event n; for further testing. The algorithm halts when no further swapping occurs after a complete pass
\hrough all events in the group.

forming the initial best guess of clusters and their representatives given an arbitrary overall event
group. Finally, we will describe the process for forming event groups given the initial distribution
of globally geo-referenced events. The actual process includes one additional step after k-medoid
optimization to handle the rare small fix-ups needed where poor quality clusters are formed and

events are assigned to inappropriate clusters, but we will not describe that here. — ) ) ) o ) o ) _
) Estivill-Castro, V., Houle, M. E., (2001), Robust Distance-Based Clustering with Applications to Spatial Data Mining, Algorithmica, 30(2):216-242.

. J : ) .
. . . . . ] ) . ) Delaunay, B.N., (1934), Sur la Sphere Vide, Bull. Acad. Science USSR VII: Class. Sci. Math., 793-800.
Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. \_ J

N

7
REFERENCES




