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Objective & Goals: 

• to obtain time-dependent thermal 
characteristics from the radiative 
emission of the expansion products 
resulting from debris generated from 
metallic and explosive targets 
shocked to very high pressures and 
temperatures



Assumptions: 

• Assume we have captured the spectrum of a 
blackbody with grey emissivity
> Knowing it is not ‘1’,  but emissivity is constant over all 

wavelengths
• Local thermodynamic equilibrium is assumed

> Not strictly true:  spectral lines are a clear indicator of a 
non-equilibrated source

> Making spatial average estimates of temperature where 
gradients may exist:  debris cloud at a single temperature

Even though these approximations/assumptions 
may be sources for large uncertainties, the 

calculated temperature estimates appear quite 
reasonable—as will be seen 



Materials: E/Ev Relation
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• E is the internal energy increase of the 
shocked material, 
• Ev is the specific energy required to 
vaporize the material

Experiments 
conducted on 

aluminum, cerium, 
and Composition-B
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Experimental Method: 
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Determination of amplitude correction 
term fro any spectrum obtained from 

950-1500 nm

Corr = B/l

Correction 
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Black Body signal value 
calculated  from the lamp 

formula

Recorded 
spectrum
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QTH lamp is recorded through 
spectrometer. The lines, 256 point 
arrays, are plotted as a function of 

wavelength and intensity.
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Spectrometer Calibration 
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 Lamp Data
Nist Formula Fit
Blackbody Simulation, 3192.7 K

Known spectrum of the lamp from NIST Tables, 
plotted with the measured calibration lamp 

spectrum multiplied by correction term.
Note that if the measured calibration lamp spectrum is multiplied 
by the correction term, we simply recover the blackbody curve, as 

well we should.
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A krypton lamp source provides three 
distinct, relatively high intensity lines, (for 

a specific spectrometer grating), 



Experimental Results: 
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Ti=>Al, > 11 km/s, 200 GPa
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Experiments on Comp-B up to 130 GPa



Extracting temperature : 
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From our basic premise, 
Planck’s Law can describe 
the spectral radiance as:

Assume ε, 2hc2 is a constant:

• For non-quantitative measurements of intensity, the factor ‘s’ may be 
used as a scaling value that matches the blackbody shape of the 
observed signal

• Recorded, corrected spectrum can be fit using non-linear least-
squares routine with two adjustable factors: s and T

• Assumptions:  grey body, ε(λ) = constant and thermal equilibrium is 
assumed



Extracting temperature :
Fitting functions 

Wien’s approximation for 
fitting function:  ‘s’ and ‘T’
will be used to estimate 
starting values

‘s’ and ‘T’ : choosing two 
distinct signal and 
wavelength values, ‘I’ and ‘λ’

• These curves give way of visualizing the sensitivity of the fit:
> If the curves easily envelop the corrected data—fit is sensitive—

estimate is probably reasonable
> If the curves do not encompass the spectral lines—fit is 

insensitive and will not capture a good temperature estimate.
• One can interpret these curves as error bars:  300K for reasonable 

approximations
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Extracting temperature :
fitting the data 

• These curves give way of visualizing the sensitivity of the fit:
> If the curves easily envelop the corrected data—fit is sensitive—

estimate is probably reasonable
> If the curves do not encompass the spectral lines—fit is 

insensitive and will not capture a good temperature estimate.
• One can interpret these curves as error bars:  300K for reasonable 

approximations
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Temperature Estimates:
Aluminum 

• Aluminum:  not trivial, greater uncertainty 
> Large magnitude of spectral radiance
> Presence of large atomic emission lines

• Temperature history suggests constant temperature
> Consistent with a solid—cooling is not as rapid

• Reasonable results when compared to phase diagram
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Temperature Estimates:
Comp-B 

• Using dissociation energy (E/Ev):  0.5 – 5 for tests 
> Tests represent experiments that undergo detonation, and those 

where detonation is overdriven (or delayed)
• Lower pressure experiment produced higher temperature

> Same trend for tests at 41, 98, and 108 GPa
• Released from higher pressure:  velocity is faster
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Conclusions: 

• First temperature measurements/estimates of  
expansion products from materials shocked to 
high temperatures
> Ascertained temperatures are estimates, results 

appear reasonable
• Lower pressure experiments produced higher 

temperature
> Encouraging results based on simplistic assumptions

• Further research is necessary to validate assumptions.
• Experiments providing early time measurements: 

shocked temperatures
• Combination of pressure, density measurements of 

shocked and expanded materials:  potential to determine 
phase diagrams.
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plotted with the measured calibration lamp 
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A krypton lamp source provides three 
distinct, relatively high intensity lines, (for 

a specific spectrometer grating), 
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