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Fully-Assembled MEMS Limit Surface 
Treatment Options

• limited actuation and restoring forces

– 1 N to ~ 10 mN

• complexity afforded by multiple layers

– deeply buried sliding surface
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Friction and Wear Represent the Greatest 
Limitations to Microsystem Reliability

Silicon popular due to mature fabrication infrastructure

• processes well known to grow, pattern, and etch

• can control residual stress

Particles

• more sensitive than microelectronics

Fracture

• handling or overshock

Adhere after fabrication

• “in-process adhesion”

Adhere during use

• “in-use adhesion”

Friction exceeds available actuation force (monolayer damage)

Wear (debris formation)
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MEMS Failure Mode is a Function of the 
Device’s Design
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surface treatments are 
damaged easily, even for 
normal contact alone

courtesy D.A. Hook, 
these proceedings50 m
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Alcohols Explored for Reducing Adhesion 
Between Silicon Surfaces

alcohol dissolves surface contaminants and water, creating a 
lower surface tension film

Adsorbed Thickness
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K. Strawhecker, D.B. Asay, J. McKinney 
and S.H. Kim, Trib. Lett. 19 (2005) 17-21.

ATR-FTIR measurement of adsorbed film 
thickness

• 1-3 monolayers at 0.1 < P/Psat < 0.9

AFM measurement of adhesion

• low concentrations significantly reduce 
adhesion

Adhesion vs P/Psat
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Vapor Phase Lubrication of Silicon Reduces 
Friction in Macroscale Sliding

No measurable wear for P/Psat ≥ 8%

• corresponds to ~ monolayer coverage from ATR-FTIR data

SiO2 ball on Si 
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+ Automated eXpert Spectral Image Analysis (AXSIA) 

• solve D=C*ST using constrained alternating 
least squares

• constrain to physically realistic solutions

• number of components C is the minimum 
needed to reconstruct the original data, 
minus noise

• no bias or assumptions; rapidly identifies 
subtle changes 

Multivariate Analysis Of SIMS Data Allows 
Detection of Subtle Changes In Chemistry

Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS)

M. Keenan and P. Kotula, Surf. Interface 
Anal. 36 (2004) 2433.
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ToF-SIMS With Multivariate Analysis Shows 
Formation of High MW Product

Reaction product forms when, and where, it is needed
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Potential Show-Stoppers with VPL using 
Alcohols

Competitive adsorption of water vapor

• will water vapor in the environment inhibit high MW film formation?

Complex devices

• demonstrate lubrication of deeply-buried interfaces in real MEMS 
devics with alcohol vapor
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Linear Wear Testing in Mixed Alcohol/Water 
Environments

Load
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Water Vapor Inhibits VPL with Alcohol 
Above a Critical Concentration Ratio

1000 ppmv H2O observed in non-gettered MEMS packages

• ~3.5% RH at room temperature

• MIL spec for microelectronics is 5000 ppmv

Friction coefficient reduced above 1000 ppmv pentanol, but results in 
measurable wear
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ToF-SIMS Multivariate Analysis Shows Oligomer 
Formation in the Presence of H2O Vapor

High MW product is observed in the wear track, but at lower 
concentration than with pentanol vapor alone

0 20 40 60 80 100 120 140 160 180 200

In
te

n
s
it

y
, 
A

.U
.

m/z

N2 + 1000 ppmv 
pentanol

N2 + 1000 ppmv H2O + 
2000 ppmv pentanol

CxHy
+



071012 Dugger AVS 2007.ppt:13

MEMS Device Testing in Mixed Alcohol/Water 
Environments

Device packaged in 24-pin DIP

Process image data to give displacements

• adhesion

• static friction

• dynamic friction

dry N2

MEMS Environmental 
Test Chamber

Probe Station and 
Drive Electronics

Timed Image Capture 
Displacement vs Input (V)

10 m

Fad = Funload – Fload + Fr

= a(Vc
2-Vp

2) + kx

Ffr = Fpush – Fpull - Fr

= a(Vslip
2) 

Fd = kx
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Effects of Competitive Water Adsorption on 
MEMS Tribometer Operation

MEMS tribometer
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Wear is Minimized with In Situ Vapor Phase 
Lubrication

Deposit collected adjacent to asperity locations (real contact) on 
sidewall of MEMS tribometer
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Increased Operating Life of Gear Train with 
Vapor Phase Lubrication

gear train on aging module
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Summary

Vapor Phase Lubrication of silicon at room temperature has been 
demonstrated

• linear alcohol (pentanol) results in reduced wear

• ability to replenish lubricant film from the vapor phase

Reduced wear is accompanied by oligomer formation

• reaction product forms at real contact locations

• suggests that thermionic emission or a catalytic surface are critical

Water vapor reduces oligomer formation and limits film replenishment

• measurable wear in macroscopic sliding with alcohol + water vapor

• limited operating life of MEMS in alcohol + water vapor

Recent paradigms about the reliability of MEMS devices with 
contacting surfaces must be revisited
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Vapor Phase Lubrication of Silicon by 
Tribochemical Reaction

S.M. Wiederhorn and D.E. Roberts, Wear 32 (1975) p.51-72

• reduced friction when abrading silicate glass in alcohols

Y. Hibi and Y. Enomoto, Wear 231 (1999) p.185-194

• alcohols reduce friction when cutting Si3N4

• very low wear rate in “higher” alcohols (4<n<11)

Y. Hibi, Y. Enomoto and A. Tanaka, J. Mat. Sci. Lett. 19 (2000) p.1809-1812

• postulate metal alkoxides condense to polymer and act as lubricant
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• device operates at 60-80°C in a hermetic package

• PFDA vapor pressure allows re-deposition of passivation layer

• also use reset voltage pulse to snap spring tip off of substrate

Texas Instruments’ Digital Micromirror Array -
A Dynamic Contact Success Story

Surface Treatments Investigated

• chlorosilane monolayers

• fluorinated ethers and other 
boundary lubricants

• solid films (diamond-like carbon, 
nitrides)

• perfluoroalkanoic acids (PFDA, 
C10F19O2H) gave high reliability

Array of ~106 Al-alloy mirrors 
modulate reflected light

• limited sliding (~10nm)

S. Henck, Tribol. Letters 1997

Keys to success: limited sliding, special actuation signals, repassivation, 
and not stored in contact
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Device Driven with 90 V Square Waves

Pin joint constrained to travel a 
circular path around gear

• large radial forces at hub and pin 
joint of gear 1

• 500 Hz rotation rate of gear 1

• 16 forward revs, then 16 in reverse
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A Mobile Phase Needed to Impart a “Self Healing” 
Capability to Lubricant Films

Perfluoropolyether lubricant 
dramatically improved the 
operating life of a lateral 
actuator

• successful in magnetic 
recording tribology

• carbon film needed to 
prevent decomposition and 
silicon roughening

• carbon film present in 
hidden areas
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