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ABSTRACT

Fully coupled Newton-Krylov algorithms are used to solve
steady low speed compressible flow past a backward facing
step for different flow Mach and Reynolds numbers. Various
preconditioned Krylov iterative methods are used to solve the
linear systems that arise on each Newton step, specifically
Lanczos-based and Arnoldi-based algorithms. Several
preconditioning strategies are considered to improve the
performance of these iterative techniques, including
incomplete lower-upper factorization with various levels of
fill-in [ILU(k)] and domain based additive and multiplicative
Schwarz type preconditioning both with and without
overlapping domains. The ILU(k) preconditioners were
generally less reliable for lower values of the flow Mach
number, and exhibited strong sensitivity to cell ordering. In
addition, the parallel nature of the domain based
preconditioners is exploited on both a shared memory
computer and a distributed system of workstations. Important
aspects of the numerical solutions are discussed.

NOMENCLATURE

p Specific heat capacity at constant pressure

Cy Specific heat capacity at constant volume
Newton damping coefficient
i-th component of F.

Discrete governing equations vector

Jacobian matrix

Level of ILU fill-in

Krylov subspace dimension
Average Krylov iterations
Inlet Mach number

Newton iteration number

System dimension

[S)

Dimensionless pressure, p= [7/ (ﬁﬁoz)
Peclet number = Re Pr

Prandd number = 0/&

Reynolds number = &,5/V
Convergence parameter

Step height

Dimensionless temperature = T/ T,

“lhl?di:;u?'h 2:gslaa~uujh&

Dimensionless principal velocity = /i,
Dimensionless transverse velocity = ¥/,
State variable veclor

Newton iteration update vector

[~ T - 3
b

Perturbation in the jth component of x
Principal coordinate variable

Grid spacing in x-direction
Transverse coordinate variable
Grid spacing in y-direction
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Greek Symbols:

@  Thermal diffusivity

Y Ratio of specific heat capacities = ¢, /¢,
£ Tolerance parameter for Krylov iteration
v Kinematic viscosity

p Dimensionless density = =5/p,
Subscripts:

n Newton iteration number

o Reference value

Superscripts:

i Refers to inner iteration

n Newton iteration number

o Refers to outer iteration

O%erators:

{1 Transpose of { ]

[~] Indicates that [ ] is dimensional
ll«ll  Euclidean norm
Il e loo Leonorm

INTRODUCTION

The objective of this work is to demonstrate the
effectiveness of Newton-Krylov algorithms for steady state
calculations of low Mach number compressible flow. Solution
of the compressible flow equations at low Mach numbers is
important in instances where: a low Mach number region is
imbedded within a high speed flow, some thermally driven
flows, and other flow situations where density variations are
important, e.g.. chemically reacting flow.

Finite volume discretization and 2 staggered mesh are used
to discretize the nonlinear governing equations. The
subsequent nonlinear algebraic equations are linearized using
Newton's method. In this study, Krylov subspace based
iterative algorithms are considered for solving these linear
systems, specifically Lanczos-based (Lanczos, 1952) and
Amoldi-based (Arnoldi, 1951) algorithms. The Lanczos-based
algorithms include the conjugate gradients squared (CGS)
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algorithm of Sonneveld (1989), the Bi-CGSTAB algorithm of
van der Vorst (1992), and the transpose-free quasi-minimal
residual (TFQMR) algorithm of Freund (1993). The restarted
generalized minimal residual algorithm [GMRES(mn)] of Saad
and Schultz (1986) is chosen from the Amnoldi-based methods,
where m is the selected dimension of the Krylov subspace.

The primary advantage in using an iterative solver is
reduced memory requirements. Newton's method can be very
memory intensive due to Jacobians with large matrix
bandwidths. Several recent articles have used conjugate
gradient-like algorithms to reduce the large memory
requirements associated with problems of this type (e.g.,
Ajmani, 1993 and 1994; Cai, et al., 1993; Dutto, 1993 and
Dutto et al., 1994a and 1994b; Habashi, 1994; Orkwis, 1993;
and Venkatakrishnan 1991 and 1993). In particular, Ajmani
(1994) and Dutto et al. (1994a and 1994b) have investigated
efficient parallel implementations of these numerical
techniques.

The objective of this paper necessitates a comparison of
various Krylov solvers, listed above, which are applicable to
both non symmetric and non positive definite linear systems.
Specifically, the advantages and disadvantages of Lanczos-
based and Arnoldi-based algorithms are compared and
contrasted. Additionally, the efficiency of a Krylov algorithm
is strongly tied to preconditioner effectiveness.
Consequently, the performance of incomplete lower-upper
(ILU) preconditioners (see Meijerink and van der Vorst, 1977)
plus additive and multiplicative Schwarz preconditioners (see
Cai and Saad, 1993) are investigated for different values of the
flow Mach and Reynolds numbers.  Preconditioner
effectiveness is measured not only by lower inner iteration
counts, but also by CPU efficiency and memory cost. The
latter two also being dependent upon either parallel or serial
implementation.

This paper is organized as follows. First, the governing
equations and assumptions are described along with the model
problem definition. Next, the general numerical solution
algorithm is outlined. In the penultimate section,

computational results are presented that illustrate the,

important numerical features of the different Krylov
algorithms and preconditioners (including parallel
implementations) with respect to solutions of the low Mach
number compressible flow model problem. Important aspects
of the numerical solutions are summarized in the final section.

MODEL PROBLEM

The physical situation of interest in this study is low Mach
number (<0.25) compressible flow past a backward facing
step. The goveming equations of interest (in dimensionless
form) are given by,
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p=pTf(1a?), (5)

where constant transport properties have been assumed along
with Stokes condition (White, 1974). Additionally, heat
generation, viscous dissipation, and the effects of buoyancy
forces have been neglected. ’

The backward facing step model problem geometry and
boundary conditions are presented in Figure 1. Also shown in
Figure 1 are the Mach number contours corresponding to a
solution with an inlet Mach number of 0.25 and a Reynolds
number of 100. These contours illustrate the region of
separated recirculating flow that exists downstream of the step.
This solution was obtained using a uniform grid with 16 cells
in the x-direction and 80 cells in the y-direction (i.e., 16x80).
This grid had equal mesh spacings in both directions.

NUMERICAL SOLUTION ALGORITHM

Finite volume discretization, using simple upwinding for
convection terms, is used to derive a set of discrete nonlinear
algebraic equations from the continuous partial differential
equations described previously. This discretization assumes
thermodynamic variables are located at volume centers, while
velocities are located at volume faces, i.e. a staggered grid.
This system of nonlinear algebraic equations is linearized
using Newton's method. The resulting set of linear algebraic
equations are then solved using preconditioned Krylov
subspace algorithms. In addition, several performance
enhancement techniques are used to improve overall algorithm
robustness and to simplify implementation. These include an
efficiently evaluated numerical Jacobian, the use of mesh
sequencing, and an adaptively damped Newton iteration (Knoll
and McHugh, 1992).

Newton's Method

Newton's method solves nonlinear systems of the form,
F(x)=[fl(x),fz(x).....fN(x)]T =0, for the state vector,
X =[xl,x2,...,xN}T. Application of Newton's method requires

the solution of the linear sysiem,
Jrox™ =-F(x"). (6)

where the new solution approximation is obtained from,
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Figure 1. Model problem geometry and Mach number contours for Ma=0.25 and Re=100 on a uniform 16x80 grid.

x™* = x" +d&x"™" )
The constant, d (0 < d < 1), in Equation (7) is used to damp the
Newton updates. The damping strategy is designed to prevent
the calculation of non-physical variable values (i.e., negative
temperatures and densities), and to scale large varigble updates
when the solution is far from the true solution. Note that the
elements of the Jacobian appearing in Equation (6) are
evaluated numerically using finite difference approximations
(Knoll and McHugh, 1992). The convergence criterion for the
outer Newton iteration is based upon a relative update defined
by the following outer iteration convergence parameter,

»Tall i Max{ixf1a} | ®

Convergence is then assumed when R,‘,’<1:c10'6 and

"F(x")lL <1x107%.

Kryloy Subspace Based Algorithms

Equation (6) requires solution of large linear systems of
dimension N. Direct linear solution techniques often become
impractical for large linear systems because of high memory
and CPU cost. A viable alternative is the use of Krylov
subspace based iterative methods, specifically Amoldi-based
and Lanczos-based conjugate gradient-like algorithms.

The Amoldi-based GMRES algorithm was derived so as to
maintain optimality, but at the expense of economical vector
recurrences (see Saad and Schuliz, 1986). Consequently, the
work and storage requirements of GMRES increase with the
iteration count. Therefore, practical implementations
frequently require use of the restarted version, GMRES(m),
where m is the maximum dimension of the Krylov subspace.
The restarted algorithm is then only optimal within an m-
iteration cycle, and so frequent restarts can lead to slow
convergence or even algorithm stall.

In contrast, the Lanczos-based Krylov algorithms are
derived so as to maintain economical recurrences, but at the
expense of optimality. Note also that the non symmetric
Lanczos process itself is susceptible to breakdowns, making
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algorithms derived based upon this process also susceptible to
breakdown. CGS was the first transpose-free algorithm of this
type developed (Sonneveld, 1989). It was derived by squaring
the BCG (Lanczos, 1952 and Fletcher, 1976) polynomial
relations in order to eliminate use of the matrix transpose.
CGS can exhibit very rapid convergence compared to BCG, but
its convergence is sometimes marred by very wild
oscillations, which under certain conditions can lead to
inaccurate solutions (van der Vorst, 1992). This difficulty led
to the development of both Bi-CGSTAB (van der Vorst, 1992),
which uses local steepest descent steps, and TFQMR (Freund,
1993), which uses the quasi-minimization idea, to obtain more
smoothly convergent CGS-like solutions.

An iterative linear equation solver allows Equation (6) to be
solved less accurately during the initial Newton iterations, and
more accurately as the true solution is approached. This is in
contrast to the use of a direct solver, which requires the same
amount of work each time Equation (6) is solved. An ‘inexact’
Newton convergence criterion similar to that proposed by
Averick and Ortega (1991) and Dembo et al. (1982) is
employed. Specifically, the inner Krylov iteration is assumed
converged when,

-=IIJ ox™ + F(x )”<s
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n

The selection of £ is highly empirical. Based on the results of

McHugh and Knoll (1993), £=1072 is used. This inner
iteration convergence criteria is combined with a limit on the
maximum number of inner iterations, set at 200.

An important issue with regard to the efficient
implementation of conjugate gradient-like algorithms is
preconditioning. In this work two classes of preconditioners
are considered. The first class is incomplete lower-upper (ILU)
factorization type preconditioners (Meijerink and van der
Vorst, 1977). Specifically, ILU preconditioners with various
amounts of fill-in are considered based on the level of fill-in
idea of Watts (1981). In the current implementation, the
banded structure of the Jacobian matrix is exploited and so
only non-zero diagonals are stored. Consequently, the ILU (k)
preconditioners used in this study are derived from this
sparsity pattern. The ILU preconditioning choice is applied
from the right. This choice is often used because it ensures
that the preconditioner does not influence the residual norm
used to evaluate convergence.



The second preconditioning class is the use of domain-
based preconditioners. These include preconditioners based
upon the additive and multiplicative Schwarz algorithms (see
Dryja and Widlund, 1994; and Cai and Saad, 1993). Several
different blocking strategies are considered both with and
without overlapping domains. Full coupling between
variables is retained within each sub-domain and LINPACK
banded Gaussian elimination (Dongarra et al., 1979) is used for
the required sub-domain solves. These domain-based
preconditioners have the additional advantage of being more
amenable to parallel implementation compared with ILU-type
preconditioners. Note that in this work, the domain-based
preconditioners are applied from the left. In this case, the true
residual is computed on each inner iteration to ensure the
preconditioner choice does not influence the residual norm that
is used 1o monitor convergence.

COMPUTATIONAL RESULTS
An important issue with regard to algorithm performance
stems from the pressure dependence in the momentum

equations, For low Mach number flows this dependence
generates .large off-diagonal terms in the Jacobian matrix that
are proportional 1o one over the Mach number squared. Since
most other terms are of order unity, Equation (6) represents a
poorly conditioned linear system that is difficult to solve.
Consequently, the effective use of Krylov iterative algorithms
requires very robust yet efficient preconditioning. This
section investigates several different Krylov solvers,
compares ILU and domain-based preconditioning strategies,
and then studies parallel implementations of the domain-based
preconditioners.

Comparison of Different Krylov Algorithms

The advantages and disadvantages of the Lanczos-based and
Arnoldi-based algorithms are compared and contrasted in this
subsection. Figure 2 shows the outer Newton iteration
convergence history for three different Newton-Krylov
algorithms in solving a 16x80 grid problem from a flat initial
guess with an inlet Mach number of 0.25 and 2 Reynolds
number of 100. Note that ILU(2) preconditioning was used
with each of the Krylov algorithms. Although convergence
was obtained using each algorithm, the Newton-TFQMR
algorithm enabled better convergence for this specific
problem. Although not shown in Figure 2, convergence
behavior similar to the Newton-TFQMR algorithm was also
obtained using the CGS and Bi-CGSTAB algorithms. The
difference in convergence behavior with GMRES was traced
primarily to the second Newton step, which in all cases yielded
an especially difficult linear system. The GMRES algorithms
experienced stall because of their restricted Krylov subspace
dimensions, and so did not converge within the allowed 200
inner iterations. In fact, the GMRES(20) algorithm also did
not converge on the first Newton step. TFQMR, although
requiring a large number of iterations, was able to converge
within this inner iteration limit. Consequently, the Newton-
TFQMR algorithm was able to move past this difficult linear
system by the next Newton step. In contrast, the GMRES
algorithms returned relatively poor Newton updates, which
subsequently required damping. Consequently, more iterations
were needed to move past this difficult part of the calculation.
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Damping was initiated for the GMRES(20) algorithm on the
first Newton step so that the severity of the poor update
returned on the second step was mitigated in comparison with
the GMRES(40) algorithm. Consequently, more stringent
damping was needed in the case of the Newton-GMRES(40)
algorithm, thus explaining why it required the most Newton
iterations for this specific case.

The behavior discussed above demonstrates how the Krylov
iteration can significantly affect the overall performance of
the Newton-Krylov algorithm. Thus, it is instructive to
examine the behavior of these different Krylov solvers. Figure
3 'presents the convergence history of the different Krylov
algorithms in solving the linear system on the first Newton
step of this calculation. The first Newton step was selected
because then each of the Krylov algorithms are solving the
same linear system. Observations indicate that GMRES(m)
converges rapidly if the required inner iterations are less than
the specified dimension of the Krylov subspace, m. If frequent
restarts are necessary, however, the convergence curve may
flatten considerably to the point of stall. Specifically, notice
that the convergence of GMRES(40) is very strong on this
first Newton step, whereas the convergence of GMRES(20) is
very poor beyond 20 iterations because of algorithm restarts.
Recall from the discussion above, however, that GMRES(40)
also encountered stall on the next Newton step. The CGS
algorithm works well overall, but does exhibit very erratic
convergence behavior as shown in Figure 3. The Bi-CGSTAB
exhibits more smoothly converging solutions, but can still
exhibit oscillatory behavior. The TFQMR convergence curve
is smooth, although somewhat flat during the intermediate
iterations.

The TFQMR algorithm was selected for all subsequent
calculations because of its smaller storage requirements
compared with the GMRES algorithms and its somewhat
smoother convergence behavior compared with the other
Lanczos based algorithms. Note that the storage requirements
for the GMRES(40) algorithm is roughly four times that of the
Lanczos-based algorithms and twice that of GMRES(20).

Preconditioner Effectiveness

The efficiency of the overall solution is strongly tied to
preconditioner performance. Consequently, the effectiveness
of ILU(k) and additive/multiplicative Schwarz preconditioners
are investigated in this section for different values of the flow
Mach and Reynolds numbers. Preconditioner effectiveness is
measured not only by lower inner iteration counts, but also by
CPU efficiency and memory cost. The latter two measures also
being dependent upon either parallel or serial implementation.
This subsection focuses on serial implementations, while the
next subsection considers parallel implementation issues.

Table 1 presents the memory requirements for both ILU(k)
and domain-based preconditioning on a uniform 16x80 grid.
The ILU data assumes a reverse row type ordering, in which
cells are numbered sequentially across the channel starting
from (x=2, y=10) proceeding towards the inlet with the x-
index, i, running fastest. This ordering scheme performed
better than other schemes that started numbering from the inlet
and/or that numbered sequentially along the channel. The ILU
preconditioner memory requirements are presented as a
function of the level of fill-in, k, and represent the storage
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Figure 2. Convergence history of three different Newton-
Krylov algorithms.
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Figure 3. Comparison of convergence behavior of different
Krylov solvers.

required for the non-zero diagonals listed in the second
column. For the selected cell ordering, ILU(3) is equivalent to
a full factorization of the Jacobian without pivoting, and so it
can no longer be viewed as an incomplete factorization.

The domain-based preconditioner storage requirements in
Table 1 are listed as a function of the selected sub-domain
blocking strategy and the amount of overlap shared by
adjacent sub-domains. The data was computed assuming a full
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. Gaussian elimination (Dongarra et al., 1979).

LU factorization for each sub-domain using LINPACK banded
i The same
preconditioner memory is required regardless whether additive
or multiplicative Schwarz type preconditioning is selected.
Reference names used to identify the different domain-based
preconditioner selections in subsequent discussions are listed
in column 7 of Table 1. The direct solve memory requirements
using the LINPACK routines is given by the limiting 1x1
blocking case (8.3MB). Keep in mind that the per processor
storage requirements of the domain-based preconditioners

could be reduced considerably in a distributed computing
environment.

Table 2 presents performance data for the preconditioners
listed in Table 1 in solving 6 different flow conditions
identified by 3 different inlet Mach numbers and 2 different
flow Reynolds numbers. The required number of Newton
iterations (n), the average number of TFQMR iterations per
Newton step (), and the total CPU time (sec.) are presented
for each preconditioner selection. This data was obtained on a
single HP Model 735 workstation using a uniform 16x80 grid.
The 'NS' abbreviation in Table 2 indicates that no solution was
obtained within the allowed 25 Newton iterations, while a
superscript over the Newton iterations counter indicates the
number of times the inner iterations encountered the upper
limit of 200. Note that the preconditioner selections are listed
in ascending order with respect to memory cost.

The ILU(k) preconditioners were generally less reliable for
lower values of the flow Mach number as seen in Table 2. In
fact, solutions using ILU preconditioning were obtained only
for an inlet Mach number of 0.25, and only ILU(2) enabled a
converged solution for Re=100 at that Mach number. Since
the effectiveness of the ILU preconditioners is dependent upon
the problem size, the poor performance of these
preconditioners will likely worsen as the grid is refined. In
contrast to the ILU data, the domain based preconditioners
generally performed well at the lower Mach numbers as
indicated in Table 2.

Multiplicative Schwarz preconditioning outperformed
additive Schwarz preconditioning in most cases, except at the
lowest inlet Mach number considered when using the 4x20 and
2x10 blockings without overlap. In both cases, TFQMR
encountered difficulty in solving the linear system from the
first Newton step. However, the multiplicative Schwarz
preconditioned TFQMR algorithm returned a Newton update
that resulted in a2 singular sub-domain matrix on the next
Newton step. The use of a 2-cell overlap, however, appeared 0
remedy this difficulty.

Generally, the fewest number of sub-domains produced the
best results on this coarse 16x80 grid. In fact the 1x1
blocking (single sub-domain) produced the best results for all
6 flow conditions. However, on finer grids this selection may
be impractical for several reasons: first, the high memory
storage cost; second, the full LU factorization becomes more
expensive as the grid is refined (see McHugh and Knoll, 1994);
and third, a single domain is not amenable to parallel
implementation.  The last reason highlights another
important advantage of the domain-based preconditioners,
namely parallel implementation. The additive Schwarz
preconditioners can be parallelized readily, while the
multiplicative Schwarz algorithms can be parallelized using
multi-coloring schemes. In this manner, both preconditioners
allow the CPU and memory costs to be distributed over several
processors. '



Table 1. Preconditioner memory requirements for a uniform 16x80 grid. .
—e————————— __________——lﬂ———————gr———————————'______________________—.

ILU(k) Preconditioning Domain Based Preconditioners
(reverse row ordering) [Additive (AS) Schwarz and Multiplicative (MS) Schwarz}
4 non-zero | Memory | # blocks in | # blocks in | # overlap Reference Memory

k diagonals (MB) x-direction y-direction cells name (MB)
0 35 1.4 4 20 0 4x20-0-AS & 4x20-0-MS 2.4
1 59 2.4 2 10 0 2x10-0-AS & 2x10-0-MS 4.3
2 94 9 4 20 2 4x20-2-AS & 4x20-2-MS 53
5 2 10 2 2x10-2-AS & 2x10-2-MS 6.8
1 5 0 1x5-0-AS & 1x5-0-MS 8.3
1 1 0 1x1 8.3
1 5 2 1x5-2-AS & 1x5-2-MS 9.3

e ——————————

Table 2. Algorithm performance data (n=Newton iter., m=ave. inner iter. per Newton iter., NS=No Solution).
Mach No. = 0.25 Mach No. = 0.025 Mach No. = 0.0025
Precond. CPU CPU CPU
Re Selection n m (sec) n m (sec) n m (sec)
1ILU(0) NS NS NS NS NS NS NS NS NS
4x20-0-AS 8 93 178 7! 140 222 73 184 325
4x20-0-MS 7 50 124 7 73 168 NS NS NS
TLU(1) NS NS NS NS NS NS NS NS NS
ILU2) 8 39 431 NS NS NS NS NS NS
2x10-0-AS 8 41 120 7 62 ‘145 7 110 235
2x10-0-MS 7 21 81 7 30 103 NS NS NS
100 | 4x20-2-AS 8 82 251 7 109 305 8 141 435
4x20-2-MS 7 28 132 7 44 188 7 72 286
2x10-2-AS 7 40 134 7 54 169 7 71 210
2x10-2-MS 7 18 93 7 26 120 7 47 188 i
1x5-0-AS 8 19 106 7 26 114 7 39 151 :
1x5-0-MS 7 9 70 7 11 76 7 19 103 {
1x1 7 0 43 7 0 43 7 0 43
1x5-2-AS 7 18 96 7 21 107 7 33 142 }
1x5-2-MS 7 7 70 7 8 72 7 12 147 ;
1LU(0) 9 109 319 NS NS NS NS NS NS
4x20-0-AS 7 85 145 6 140 191 62 166 222
4x20-0-MS 7 48 121 6 64 131 NS NS NS
ILU(L) 7 6 71 NS NS NS NS NS NS ]
ILU(2) 7 2 105 NS NS NS NS NS NS
2x10-0-AS 7 38 101 6 58 120 6 86 164
2x10-0-MS 7 22 85 7 22 85 NS NS NS 1
10 4x20-2-AS 7 58 179 6 73 184 5 97 197 3
4x20-2-MS 7 22 115 7 25 125 5 40 126
2x10-2-AS 6 30 96 6 39 114 5 49 115
2x10-2-MS 6 14 69 6 15 74 5 28 92 4
1x5-0-AS 7 15 86 6 21 89 5 23 79
1x5-0-MS 6 8 63 5 9 56 6 12 73
1x1 6 0 38 4 0 26 5 0 32
1x5-2-AS 7 13 82 6 11 67 4 16 55
1x5-2-MS 6 5 56 6 5 54 5 7 51
Table 3. Shared memory parallel performance data (n = Newton iter., m = ave. inner iter. per Newion iter.).
No. of Sub- | No. of No. of Speed-up Efficiency (%) Precond.
Domains and | Blocks, Blocks, Serial Parallel Serial CPU Parallel Speedup Memory
processors x-dir. y-dir. n m CPU (sec) CPU (sec) (Parallel CPU) ( ¥ Processors ) ™Mw)
2 2 1 716 426 242 1.8 90 323
4 4 1 6 32 326 120 2.7 68 165
8 8 1 7 10 424 156 2.7 34 8.7
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This subsection investigates two different parallel
implementations of the solution algorithm using the additive
Schwarz preconditioning selection. Solutions to the model
problem with an inlet Mach number of 0.0025 and a Reynolds
number of 100 are obtained on finer grids than previously
considered. The first implementation uses a shared memory
computer, while the second implementation uses a distributed
system of workstations in the form of a cluster.

The shared
memory parallel implementation consisted of paral]elizing.the
formation of the Jacobian and preconditioner on an eight
processor CRAY C-90 computer with 512MW of main
memory. Profile data on this computer for a 64x320 grid
(81,920 unknowns) solution in a serial mode indicated that the
Jacobian evaluation represented the largest portion of the total
CPU time. The next significant portion of the calculation was
due to the formation and use of the preconditioner.
Consequently, these two aspects of the solution algorithm
were parallelized. The Jacobian evaluation was parallelized so
that Jacobian terms corresponding to equations and variables
at a given y-location were computed simultaneously on
different processors, while the preconditioner portions of the
calculation were parallelized via domain decomposition. Thus,
the sub-domain LU factorizations, which make up the global
additive Schwarz preconditioner, were each computed on
separate processors. Consequently, the number of processors
employed was chosen to equal the number of sub-domains.
Table 3 presents performance data for these solutions for three
different blocking strategies for both serial and parallel
implementations. Note that the 2x1 blocking strategy
resulted in nearly a two-fold speed-up (1.8) using two
processors. However, in the case of the other blockings, the
global preconditioner effectiveness was diminished, resulting
in larger average inner iteration counts, and 2 shift in the
workload to the Krylov solve, and more specifically to the
forward-backward operations with the preconditioner.
Unfortunately, these operations have a high parallel overhead
cost and so the parallel efficiency was diminished. In addition,
the parallel efficiency of the Jacobian evaluation, which is
still a significant portion of the calculation, was also
diminished. Presumably, this diminished efficiency is also due
in part to an increase in the parallel overhead cost.
Improvement of the parallel efficiency of the solution
algorithm is currently being investigated.

istri . The
distributed parallel implementation used the Parallel Virtual
Machine (PVM) software package developed by Geist et al.
(1993) to distribute the additive Schwarz preconditioner over a
cluster of four HP Model 735 processors, with each processor
having 80MB of main memory. This configuration suggested
the designation of one processor as the master, which in turn
controlled slave processes that were assigned to each of the
remaining three processors. In contrast to the CRAY C-90
serial profile data, similar data on a single workstation
indicated that the preconditioner formation was the dominant
portion of the calculation. Consequently, the distributed
parallel implementation concentrated only on the parallel
implementation of the preconditioner portions of the solution
algorithm. A 39x195 grid (30,420 unknowns) was selected to
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demonstrate this distributed memory implementation. Since
three slave processors were available, this grid was
subsequently divided into three sub-domains (1x3 blocking),
assigning each slave processor a sub-domain. Each slave
processor was required to compute the LU factorization of its
sub-domain contribution to the additive Schwarz
preconditioner, keeping this LU factorization in local
memory. When the additive Schwarz preconditioner was
required to act on a global Krylov vector, portions of that
vector corresponding to the sub-domains were sent to slave
processors by the master. The slave processors in tumn
computed their local contributions and then sent the results
back to the master for assembly. These preconditioner

operations were the only ones distributed over the slave
processors. However, other portions of the calculation such as
matrix-vector products and Jacobian evaluations are amenable
to parallelization.  Future work will concentrate on
distributing these remaining parts of the algorithm.

Note that the single processor memory requirements for
storing the preconditioner was approximately 116MB, which
prohibited running the calculation on a single processor of the
cluster; while the per processor memory requirements for the
distributed implementation was one third of this value. In this
case, the distributed implementation enabled the three-domain,
39x195 grid computation by amortizing the preconditioner
memory cost over three processors. This feature is an
important advantage of distributed parallel implementations.

The distributed computation was benchmarked against a
singe CPU computation on an identical processor, but one that
had over 200MB of main memory. Both computations required
7 total Newton iterations and averaged 22 TFQMR iterations
per Newton step. The single CPU computation required 1371.5
seconds, while the distributed computation required 922.8
seconds, representing a 33% speed-up.

SUMMARY AND CONCLUSIONS

Fully coupled Newton-Krylov solution techniques were
investigated for solving low Mach number compressible past a
backward facing step. Various Krylov solvers and
preconditioning strategies were studied. Additionally, parallel
implementations using both shared memory and distributed
memory environments were considered.

Observations indicate that the Armoldi-based algorithm,
GMRES(m), converges rapidly if the required inner ijterations
are less than the specified dimension of the Krylov subspace,
m. If frequent restarts are necessary, however, the convergence
curve may flatten considerably to the point of stall. The CGSs
algorithm works well in most cases, but sometimes does
exhibit very erratic convergence behavior. Bi-CGSTAB and
TFQMR exhibit more smoothly converging solutions, but can
still exhibit either erratic or stalled convergence.

The JLU(k) preconditioners were generally less reliable for
lower values of the flow Mach number, and exhibited
sensitivity to both cell ordering and level of fill-in. The
domain-based preconditioners outperformed the ILU(k)
preconditioners at the lower Mach numbers. Additionally, the
domain-based preconditioners can be parallelized readily,
allowing the CPU and/or memory costs to be distributed over
several processors.

Parallel results were obtained on a shared memory, eight
headed C-90 CRAY computer using the additive Schwarz
preconditioner without overlap on a 64x320 uniform grid



(81,920 unknowns) with an inlet Mach number of 0.0025 and
flow Reynolds number of 100. This work concentrated on
parallelizing the Jacobian and preconditioner portions of the
calculation. Results indicated that for only two relatively
large sub-domains, nearly a two-fold speed-up was obtained on
two processors (90% parallel efficiency). However, as the
number of sub-domains and processors was increased the
parallel efficiency diminished. This diminished efficiency, in
part, can be atributed to a shift in the calculation workload so
that the inner Krylov solve, which was not fully parallelized,
became a more significant portion of the calculation.
Improving the parallel efficiency as the number of sub-
domains is increased is the subject of ongoing work.

Results for the same flow conditions were also obtained
using & parallel implementation on a cluster of four HP Model
735 workstations using the PYM software (Geist, 1983). This
solution was obtained using a 39x195 grid (30;420
unknowns). This implementation enabled the per processor
memory requirements to be reduced by a factor of three and
yielded a 33% speedup in run time compared to 2 single
processor calculation.
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