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Abstract 
 
Advances in computation and modeling capabilities have led to the potential for creating extremely high resolution 
finite element models of structural dynamic systems. Concurrently, the hope to replace, in some sense, at least 
some of the activities previously accomplished through structural dynamic experimentation has led to increasing 
interest in the field of model validation. Model validation is the activity wherein mathematical models are tested for 
their accuracy (or adequacy) for the prediction of physical system response in certain limited behavior regimes. 
However, it has been shown that, except under certain very restrictive conditions, the raw response time histories 
predicted by mathematical models provide a poor means for comparing model predictions to experimentally 
measured responses. The reasons for this will be explored, with reference to experiments performed on an 
ensemble of cell phones and the corresponding mathematical model. Further, some response measures that 
overcome the difficulties encountered in the use of raw time histories for validation will be recommended. 
 
Nomenclature 
 
η Windowed measure of temporal RMS response 
W(f) Window function 
Y(f) DFT of experimental response of structure 
y(t) Experimental response of structure 
y Windowed measure of DFT modulus of structural response 
 
Introduction 
 
Finite element models of structural dynamic systems that include up to millions of degrees of freedom are in 
common use today. They are built to simulate the behavior and responses of large, small, and intermediate-sized 
structures. High resolution models of relatively small structures may be so detailed as to simulate the behaviors of 
parts that have dimensions on the order of one millimeter. 
 
Along with progress in model size and resolution, advances in modeling accuracy have led to the hope that 
models might be constructed to simulate the behavior of a physical system with enough precision to permit 
system design, or design changes. The assumption is that time and money can be saved through the use of 
mathematical models in place of physical experiments to establish the behaviors of structures. But in order for 
decision-makers to accept the predictions of structural responses made using mathematical models, the 
prediction accuracy (or, at least, adequacy) of the models must be shown. The process for demonstrating the 
accuracy or adequacy of a mathematical model for making predictions in a specific framework is known as model 
validation. The validation process is described in many publications, for example [1,2].  
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Model validations compare the predictions of mathematical models to the results of physical experiments, and 
one of the requirements of a validation is that a quantity of interest (QOI) be specified. A QOI is a measure of 
structural response that the model is intended to predict, or a measure of structural behavior that must be 
adequately represented in order for model predictions to be satisfactory. For example, when structural strength is 
at issue the strain responses at some critical locations might be QOIs. Or for example, when an equipment item is 
known to malfunction when subjected to accelerations that surpass a pre-established level then the QOI may be 
maximum acceleration at a point on a structure where the equipment item is mounted. As a third example, it may 
be required that a frequency response function (FRF) of a finite element model match, at some level of accuracy, 
the corresponding FRF of a physical system. 
 
Structural dynamic analyses with finite element models normally predict response time histories. But it has been 
widely observed that time histories are not well-suited for use, in raw form, as QOIs in validation comparisons. 
This paper reports on an investigation into when and why response time histories are not well-suited for use as 
QOIs, and it suggests some measures that are well-suited to this purpose. The study is carried out in terms of the 
experimental shock responses of cell phones, in the hope that the similarities of this system and its excitation to 
other structural dynamic systems may shed light on the validation of many types of structural mathematical 
models. 
 
Section 1 describes some experiments in which an ensemble of cell phones is subjected to a sequence of 
nominally identical mechanical shock environments. The testing procedure is described and measured response 
time histories are shown. It is demonstrated using the measured response time histories that apparent 
experiment-to-experiment variations exist, even when an experiment is repeated on a single member of the 
ensemble (a single cell phone), and that variabilities also exist among different members of the ensemble of 
nominally identical structures. Section 2 characterizes the variabilities in both the time and frequency domains 
and explores the reasons for the variabilities. Behavior and response measures that extract similarities from 
apparently dissimilar data are also developed in that section. Section 3 briefly considers prediction of 
experimental response using a finite element model, and shows how predictions from a deterministic model might 
be compared to experimental results (which are random in nature) in a validation activity. We conclude with 
comments on some practical aspects of mathematical model validation. 
 
1 Experiments – Cell Phones Subjected to Mechanical Shock 
 
Experiments were performed to develop a data base that is useful for assessing system characteristics and 
variations in measures of response. There are two parts to the experiments. Part I tests a single cell phone from a 
collection of nominally identical units. A typical test setup – picturing a schematic element instead of a cell phone - 
is shown in Figure 1a. The phone is placed on a soft foam block that allows it to be held in the required drop 
orientation in a repeatable manner. After collision (impact) with the pendulum-hammer the phone is free to 
rebound unfettered. At the start of the test the phone is struck by a one and one-half foot square and one-half inch 
thick steel plate so that the flat surface of the plate impacts the flat front face of the phone (Figure 1a). The impact 
is designed to occur with the plate moving at a velocity of 5.4 meters per second. The cell phone was subjected to 
a sequence of nine impacts that were arranged to create an environment as nearly repeatable as possible. Part II 
of the experiment tests five cell phones from the ensemble of nominally identical units that yielded the cell phone 
for the Part I tests. Each cell phone was subjected to the same impact as the Part I unit. Every cell phone in the 
Part I and Part II tests was instrumented with a strain gage located on the printed wiring board (PWB) behind a 
relatively large chip as shown in Figure 1b. The strain gage is oriented so as to measure the longitudinal strain 
along the greater dimension of the PWB. Of course, there is a level of randomness associated with location and 
orientation of strain gages, but the degree of this type of randomness is thought to be small, and so this source of 
randomness is neglected, in this study. 
 



 
Figures 1a (left) and 1b (right). Test configuration and strain gage on PWB of cell phone. 

 
The objective of the Part I experiments was to characterize repeatability in a sequence of nominally identical 
shock tests. Figure 2 shows the strains measured during the Part I tests. In this set of tests and the next, the 
signals were low-pass filtered at 10 kHz, and the peak strains were approximately aligned. The measured strain 
responses indicate substantial variation. Because in this part of the tests a single structural realization from the 
cell phone ensemble is excited, it must be concluded that the variations occur due to test conditions. Among other 
things, we suppose that variations are related to (1) boundary conditions of the test item at the start of the 
experiment, (2) the test geometry (e.g., the angle and velocity of impact of the exciting hammer, and the location 
and orientation of a cell phone within its fixture), and other sources. Another contributor to the observed variations 
is changes in the tested cell phone between experiments, but that contribution is thought to be small. The sample 
mean of the shock response time histories and mean minus/plus two sample standard deviations are also shown 
in Figure 2. The lower and upper sample standard deviation bounds and the placement of the time histories within 
those bounds show that much of the variation must be explained in terms of the signal frequencies and phases. 
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Figure 2. Measured strain responses from the Part I experiments – a single cell phone subjected to nine nominally 

identical impacts (blue). Estimated mean and mean minus/plus two standard deviations (red). 
 
The objective of the Part II experiments was to characterize experiment repeatability associated with the testing of 
separate, nominally identical units from a single ensemble. Figure 3 shows the strain measured during each of the 
Part II tests. The measured strain responses indicate substantial variation. The variation realized here comes 
from two main sources. First, the variation associated with experiment-to-experiment changes – the variations 
witnessed in the Part I experiments - are also present here. Second, part of the variation witnessed in this set of 
experiments is due to differences in the units tested. Though nominally identical, the units must vary because they 
cannot be perfect replicates of a prototype. Specifically, nominally identical units from a single ensemble actually 
differ, to some extent, because: (1) geometries vary within (or perhaps, outside) a specified tolerance, (2) 
mechanical joints vary, particularly bolted connections, (3) material properties are not uniform and vary, even 



slightly, from one structure to the next, etc. The sample mean of the shock response time histories and mean 
minus/plus two sample standard deviations are also shown in Figure 3. The two standard deviation limits are near 
the two standard deviation limits of the Part I test responses (shown in Figure 2) and this indicates that in the 
present tests the variability associated with unit-to-unit differences is relatively small compared to the setup-to-
setup differences. (This may not be true for strain and other measurements of responses made at other locations 
in the system, and typically, it is not true.) 
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Figure 3. Measured strain responses from the Part II experiments – five cell phones subjected to nominally 

identical impacts (blue). Estimated mean and mean minus/plus two standard deviations (red). 
 
The degree of variation in the measured responses caused by the random variations listed above is typically not 
known, a priori. When the degree of variation from all sources is small, then the experimental responses will be 
close to one another; otherwise, they will not. 
 
A question to be addressed in a later section is: When we have a deterministic finite element model of the cell 
phone which is expected to simulate the behavior of the physical system, how do we compare the responses 
predicted by the model to the responses measured on the physical system during experiments? Some reasonable 
answers to the question will be proposed in the following sections. In this section we have pointed out that the 
difference between the raw time history of the model-predicted response and the measured response from a 
physical structure may be a poor means for comparison. This is due to the large test-to-test variation in the 
measured responses of physical structures. 
 
2 Variabilities in Shock Response Time Histories and some of their Measures 
 
In order to demonstrate the difficulties associated with the use of time history comparisons for model validation, 
we consider a metric of the Part I test responses. (The results for the Part II tests are similar.) Figure 4 shows the 
differences between all pairs of measured strain time histories for the Part I tests. There are nine measured strain 
time histories, therefore, there are 36 signal differences. The maximum and minimum values of the differences 
are plotted in red, and have magnitudes near – or greater than - the peak magnitudes of the strain time histories, 
themselves. (Under some circumstances the maximum and minimum values of the signal differences are double 
the magnitudes of the strain time histories.) The reason why the differences are so great relates to the frequency 
content and phasing of the strain time histories, and will be clarified, below. The differences between pairs of 
experimental strain realizations is so great that it appears that it would be difficult to use the difference between a 
finite element model-predicted response and an experimental response to judge the validity of the model 
predictions. Moreover, when multiple experimental responses are available for use as the basis of a comparison, 
it may be difficult to establish how to use them all in one systematic comparison. 
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Figure 4. Differences between pairs of measured strain time histories from the Part I tests. 

 
It must be noted that an intuitively appealing approach to assessing the adequacy of a model prediction is to plot 
the model prediction along with the measured strain response time histories of Figure 2 or 3, and simply observe 
whether or not the model prediction lies among the measurements. The approach is not unreasonable; however, 
it is difficult to rigorously judge the adequacy of a model on such a basis because a model may be quite adequate 
even if it passes outside bounds like the ones shown in Figure 2 or 3. 
 
This discussion raises another important issue. A model may be adequate if it predicts the peak dynamic 
response to within some pre-established accuracy. This is possible when the response is excited by a mechanical 
shock, because even fairly accurate - and fully adequate – models tend to predict peak responses early in the 
response time history, and the peak value of response is not the result of combinations of randomly phased input 
components. This sort of test might be applied to a model prediction, but it is not normally sufficient to require that 
a dynamic model simply predict peak responses accurately. It is normally hoped that a dynamic model will make 
accurate predictions because it contains the appropriate frequency content. 
 
The issue of frequency content in measured and predicted responses can be addressed by computing discrete 
Fourier transforms (DFTs) of strain response time histories. The moduli (also known as complex magnitudes, or 
absolute values) of the DFTs of the Part I tests are shown in Figure 5. (The results from the Part II tests are 
similar, and are not shown for the sake of brevity.) The results consistently indicate that the output contains 
substantial signal content in the frequency range up to at least 7 kHz. The signal content between 200 and 800 
Hz is probably associated with the impact. We reach this conclusion for the following reason. If the structure were 
linear (and, it is not strongly nonlinear), its response DFT would equal the DFT of its excitation times the 
structure’s frequency response function (FRF).  The structure model indicates no modes in the frequency band 
below about 1000 Hz, therefore, the FRF is relatively flat below 800 Hz. So the feature in the DFT modulus below 
800 Hz must be caused by the excitation.  
 
Several system modes appear consistently in the one through ten kHz range, but change values, at least slightly, 
from one test to the next. This is an indication that the excitation and system character vary from one test to the 
next. Therefore, one answer to the question posed at the end of the previous section may be that if the response 
predicted by a mathematical model has frequency domain amplitude characteristics that resemble the physical 
structure’s frequency domain amplitude characteristics, then the model may be an adequate representation of the 
structural system ensemble. But, based on Figure 5, the DFT amplitude spectrum of the model prediction need 
not replicate the amplitude spectra of the physical system – the amplitude spectra of the nominally identical 
structures excited by nominally identical impacts do not even replicate one another. Rather, another criterion is 
needed. 
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Figure 5. DFT moduli of strain time histories from Part I tests. 

 
Before developing such a criterion, we note that the differences in time domain responses arise, to a great extent, 
from phase differences among structural responses. Figure 6 shows the complex phases of the strain time 
histories from the Part I tests. There is some consistency among the complex phases of the shock response 
DFTs below and slightly beyond 1 kHz, but at higher frequencies the phases do not coincide with one another. 
When the DFT phases of harmonic components differ, then components of the time domain signals, typically, 
cannot match. 
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Figure 6. DFT phases of strain time histories from Part I tests. 

 
A measure of structural response that captures the essential similarities of the signals in Figure 5 is one that 
weights and averages each DFT modulus over a range of frequencies. An approach to accomplishing this sort of 
weighting and averaging is to multiply each DFT modulus by a weighting function that is centered at a particular 
frequency and has finite value over a band of frequencies, then integrate to obtain a scalar measure of the DFT 
modulus. The weighted measure described here is defined 
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where  is the Fourier transform of the i( ) ,n,...,i,fYi 1= th measured experimental response, and ( )fYi  is its 
complex modulus, and , is a non-negative, symmetric (about the origin), absolutely integrable 
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In order to use this windowed measure to compare model to experimental data, choose a set of center 
frequencies and window widths and compute the windowed measure of DFT modulus for all the experimental 
DFTs and for the model-predicted DFT. Such an analysis provides the weighted and averaged DFT moduli at 
multiple frequencies for both the model and the experiments. Normally the scalar quantities that are the windowed 
measures of DFT moduli are plotted above the window center frequencies. These windowed measures can be 



used as the basis for comparison of model-predicted results to experimental results. An example is given in the 
following section. 
 
For any given center frequency , the measured experimental response strains will have windowed response 
measures  that span a range of magnitudes. If the analog to  computed using the model-predicted 
response falls among the experimental , then the model might be inferred to be valid – even accurate - with 
respect to the averaged measure of response. If the model-predicted response measures are conservative, in 
some sense, with respect to the , then the model might be said to be adequate, but not necessarily accurate. 
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Figure 7a shows the windowed measures of the modulus of the DFT of the experimental strain responses to 
shock excitations corresponding to the DFT moduli shown in Figure 5. The window used here is the truncated 
Gaussian window given by 
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The parameter Wσ  usually defines the standard deviation of a Gaussian distribution, but here, it scales the width 
of the truncated window. The total window width is Wσ4 . The frequency centers vary and are equal to 

. The window widths all equal their corresponding center frequencies. The 
window centers and widths are arbitrary, but of course, their choice affects the validation comparison. The center 
frequencies normally span the frequency band where the model predictions are to be compared to the 
experimental results. The window widths are normally chosen to weight and average frequency domain 
information over a range of frequencies across which random variation in the physical systems is anticipated. The 
windowed measures of the DFT moduli, shown in Figure 7a, vary, depending on the center frequencies about 
which they were computed, but they appear to provide a rational basis for assessing the validity of mathematical 
model predictions.  
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Figures 7a. Windowed measures of the DFT moduli of experimental strain shock responses shown in Figure 5.  

 
The actual windows used to obtain the measures graphed in Figure 7a are shown in Figure 7b.  The first window 
is centered at 1000 Hz and has width of 1000 Hz, therefore it is defined on the frequency interval [500,1500] Hz. 
The second window is centered at 1292 Hz and has a width of 1292 Hz, therefore, it is defined on the frequency 
interval [646,1938] Hz, etc. 
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Figures 7b. Windows used t obtain the measures in Figure 7a.  (Keep in mind that the windows are Gaussian, but 

they are plotted on logarithmic axes.) 
 
The frequency averaging idea used above can be extended to a temporal averaging idea for the time domain 
response signals. In fact, various window-averaged time domain responses can be defined. One fundamental 
measure is the windowed root-mean-square (RMS). It may be defined 
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where , is the i( ) 01 ≥= t,n,...,i,ty i

th measured experimental response, and ( ) ∞<<∞− t,tw , is a window that 
satisfies the requirements imposed on the frequency domain window. The quantity is always non-negative 
because of the square inside the integral. The absolute value of a single model-predicted response might be 
required to be comparable to the collection of windowed metrics defined by Eq. (3) in order for the model to be an 
accurate representation of the ensemble of physical structures. For the model predictions to be adequate, the 
requirement that the model-predicted responses be comparable to the windowed metrics in Eq. (3) might be 
relaxed to require, for example, only that the metrics of the model-predicted response be comparable to or greater 
than the windowed metrics in Eq. (3). 
 
Figure 8 shows the windowed measures of the time domain response RMS of the experimental strain responses 
to shock excitations corresponding to the response time histories shown in Figure 2 The window used here is the 
truncated Gaussian window of Eq. (2). The temporal centers are . 

The temporal widths all equal . The windowed measures of the strain response time histories 
vary, depending on the time centers about which they were computed, but these also appear to provide a rational 
basis for assessing the validity of mathematical model predictions. 
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Figure 8. Windowed measures of the RMSs of the experimental strain shock responses shown in Figure 2. 

 



3 Response Prediction using Finite Element Model 
 
Though the focus of this investigation is not the validation of a particular mathematical model, but rather what 
measures of response might rationally be used to compare model predictions to experimental responses, we 
briefly present here some finite element model predictions of the response of the cell phones to shock excitation. 
The reason is that there are some lessons to be learned from the comparisons. A deterministic finite element 
model of the cell phones tested in Parts I and II was constructed in the framework of the ABAQUS, commercial 
finite element code. The model uses a mixture of solid and shell first order elements and includes nonlinear 
material models to represent foams, gaskets, and keymats. The plastic housings and the PWB are modeled using 
linear elastic material models. The model includes approximately two million degrees of freedom, and, is solved in 
the time domain using an explicit integration scheme. The structure is excited via an initial condition equal to the 
impact velocity. 
 
The cell phone response was computed and the strain predicted at the location of interest is shown in Figure 9 
superimposed on the measured responses of Figure 2. The model response appears to correctly predict, in a 
qualitative sense, the fundamental trends of the measured responses. It is clear that the peak value of the 
predicted response is on the low end of the range of experimentally measured responses and there are numerous 
potential reasons for this, but as stated earlier, it would be difficult to quantitatively establish the validity of the 
model based on the response time histories. 
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Figure 9. Finite element model-predicted strain response of the cell phone (red) superimposed on the measured 

strain responses (blue). 
 
The DFT of the model-predicted strain response was computed and is shown superimposed on the moduli of the 
experimental response DFTs (from Figure 5) in Figure 10. It is clear that the match is good, although the model 
prediction is slightly low in the [300,600] Hz range, and slightly high in two high frequency ranges. As with the 
predicted and experimental response time histories, it would be difficult to quantitatively establish the validity of 
the model based on the response time histories. 
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Figure 10. Modulus of the DFT of the model-predicted strain response (red) superimposed on the moduli of the 

DFTs of the measured strain responses (blue). 
 



In view of these difficulties, we resort to use of the windowed measure of RMS response discussed in the 
previous section. Figure 11 is a modified version of Figure 8 - windowed measures of the RMSs of the 
experimental strain shock responses, but with the RMS of the model-predicted strain response added. The figure 
makes it clear that the model predicted response starts high, reaches its greatest (time averaged) value before 
the experimental systems, and may decay too slowly. Whether or not the model would be validated depends on 
the criteria established for validation before the comparisons were commenced, but the comparison shows how 
many structural model behaviors can be clearly diagnosed using the averaged measure of response. 
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Figure 11. Windowed measures of the RMSs of the experimental strain shock responses (blue circles) and the 

RMS of the model-predicted shock response (red boxes). 
 
The windowed measure of the DFT modulus of strain shock response is the other quantity suggested for use in 
comparing model predictions to experimental results. Figure 12 is a modified version of Figure 7 - windowed 
measures of the DFT moduli of experimental strain shock responses, but with the windowed measure of the DFT 
modulus of the model-predicted shock response added. This figure makes it clear that the model-predicted 
response in the frequency domain is very accurate in the frequency range [ ]Hz,70001000 , and slightly too high in 
the frequency range beyond 7000 Hz. This raises a question regarding why the windowed measure of model-
predicted temporal RMS response tends to be too low in Figure 11. The answer is that the DFT modulus of the 
model-predicted response in the frequency range up to 1000 Hz – the frequency range that characterizes the 
excitation - tends to be too low. (This is confirmed in Figure 10.) As before, whether or not the model would be 
validated depends on the criteria established for validation before the comparisons were commenced, but this 
comparison also shows that many structural model behaviors can be clearly diagnosed using the averaged 
measure of response in the frequency domain. 
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Figure 12. Windowed measures of the DFT moduli of experimental strain shock responses (blue circles) and the 

DFT modulus of the model-predicted strain shock response (red boxes). 
 
Many references (e.g., [3,4]) develop formal procedures for model validation and, typically, where the data are 
similar to those available here, probabilistic validation procedures are adopted. 
 
 
 



Discussion and Conclusions 
 
This paper shows that, at least under some circumstances, response time histories cannot be easily used to 
perform validation comparisons, i.e., comparisons of model-predicted response to experimentally measured 
response. Moreover, it is difficult to use raw Fourier transforms - even the Fourier transform moduli - to perform 
the comparisons. But there are some measures of structural dynamic response that are well-suited to validation 
comparisons, measures that characterize the essential behavior of structural dynamic systems. These are 
measures that average and, perhaps, weight response characteristics in the time domain, frequency domain, or in 
another space. In this study, a windowed measure of the modulus of the DFT of a structural dynamic response 
and a windowed measure of the RMS response were considered. It was shown that these measures of response 
capture sufficient information about behavior of systems to provide a useful basis for judging system validity. 
 
This paper also shows that typical measured structural responses are random because physical systems, 
themselves are random, as well as their excitations, boundary conditions, etc. Therefore, probabilistic approaches 
to structural dynamic system validation must be implemented in practical applications. 
 
Many other measures of structural dynamic system response that have the characteristics of the ones defined 
here can also be defined. 
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