Exceptional service in the national interest

Opportunities for Integrating
Tasking and Communication Layers

Dylan Stark

SERD, U-S. DEPARTMENT OF a)

4 Sy /I '.! b?‘&“ : ) o . ) ) . -
4 (7)) VA" NS "5 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
G National Nuclear Security Administration

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP




-.:::'-..’E':':":-:. Sandia
..:;;::@:5;: ﬂ" National

M \ O bj ectives for this Talk i CE ot

1. Motivate consideration of Chapel at run time
2. Review how Chapel operates over multiple locales

3. Describe our unified runtime attempt

4. See what happens when you put the two together




Chapel Compilation Architecture

Chapel
Compiler
—-mmmmmmmmmmmEmm—_m—_—— =~ s
’
/
|
ggsfceel . Chapel-to-C Generated Cséac?nﬁirli .
Code | Compiler C Code & Linker
: A A 3
I | o B
; | Internal Modules : | Runtime Support
Standard | | (in Chapel) i | Library (in C)
Modules :
I =1l O
(in Chapel)| | =
: g |53
|5 ||<
I 3 |3 :
\ = :
o .
\ i | = :
S e

From the Static to the Dynamic

Sandia
National
Laboratories
A A J
(e — P N




Sandia
National
Laboratories
A A J
(el — P - N

Chapel Compilation Architecture

Chapel
Compiler
P —-mmmmmmmmmmmEmm—_m—_—— =~
/ \
\
|
(S:EEEC(Z I | Chapel-to-C I Generated Csé?:rizirli .
Code Cf)‘mplller © e & Linker
A A |

I

I

|

| :

; | Internal Modules : ' Runtime Support
I

|

|

I

|

¥ A

Dynamic bit

Standard
Modules
(in Chapel)

(in Chapel) i | Library (in C)

Aoway

speaiy ] /syse|
uonesIuUNWWoYD

From the Static to the Dynamic
* Runtime initialization

* Data movement

*  Work Migration




Process 0 Process 1

Sandia
National
Laboratories

_ _
Parallel Job Launch

*  (Skipping the details)
* OS Process == Locale
*  SPMD to the runtime



Process 0

4 N\

7

C| - .
—

Comm. Layer Initialization

e chpl_comm_init()
* Action handler registration
* Shared memory segment set up

Process 1

Sandia
National
Laboratories



Process 0 Process 1

Sandia
National
Laboratories

— —
Task Layer Initialization

* chpl_task_init()
* CHPL_TASKS=gthreads
* Creates a new Pthread for the task layer



Process 0

4 N\

7

C

T
:
[}
[}
[}
[}
[}
| task magic
: happens
:
[}
[}
[}
[}
[}
[}
[}
[}
!

~

Task Layer Initialization

Process 1

task magic
happens

e EEEEEEEEEEEE s P ISTID)

—

* Qthreads is initialized in aux. Pthread context
*  Number of worker threads equals number of cores

* Control returns to main Chapel RS thread

Sandia
National
Laboratories




Process 0 Process 1

Sandia
National
Laboratories

A

task magic
happens

task magic
happens

et k1121 D)

_ _
Progress Engine Start Up

* Another Pthread for a progress engine
* Loop polling GASNet

* chpl_task_yield() converted to OS sched_yield()




Process 0

et k1121 D)

task magic
happens

"schedule
main task"

Application Initiation

Process 1

task magic
happens

e i I 1D,

—

*  Compiler-generated chpl_main() called to start application code
* Spawned as a task into the tasking layer (from outside)

* Caller “suspends” waiting for that task (really a Pthread mutex block)

Sandia
National
Laboratories




Process 0 Process 1

Sandia
National
Laboratories

s

J—
(]

— —
Data Movement

* Putand get operations are implemented in the comm. layer
* Direct mapping to GASNet
* Of note: core not relinquished during operation




Process 0 Process 1

Sandia
National
Laboratories

\
J
N
J

Al di
al| d

_
Work Migration

* 3types: blocking, non-blocking, and “fast” remote fork
* (Calling task loops — polling GASNet for completion and yielding

* Possible scheduler interference on the call side




Sandia
National _
Laboratories

A Unified Runtime Example

Applications
= Qthreads: Lightweight threading interface
= Scalable, lightweight scheduling on NUMA platforms
= Supports a variety of synchronization mechanisms, =
including full/empty bits and atomic operations OpenMP | Chapel g % §
= Potential for direct hardware mapping 7

= Portals 4: Lightweight communication interface

= Semantics for.supporhng both one-sided and tagged Scalable Parallel Runtime
message passing (SPR)
= Small set of primitives, allows offload from main CPU

= Supports direct hardware mapping
= Kitten: Lightweight OS kernel

= Builds on lessons from ASCI Red, Cplant, Red Storm Kitten

= Utilizes scalable parts of Linux environment

Qthreads

Portals

= Primarily supports direct hardware mapping

918

Ad\_lanced ol =
Architectures s | S
Testbeds S| E
| wn




Sandia
National _
Laboratories

A Unified Runtime Example

. . . . Applications
= Qthreads: Lightweight threading interface
= Scalable, lightweight scheduling on NUMA platforms
= Supports a variety of synchronization mechanisms, _| = o
including full/empty bits and atomic operations nMP | Chapel | & % a
= Potential for direct hardware mapping i\ 7
= Portals 4: Lightweight communication interf A
= Semantics for.supporhng both one-sided and tagged Sca e Parallel Runtime
message passing (SPR)
= Small set of primitives, allows offload from main
= Supports direct hardware mapping Qthreads
= Kitten: Lightweight OS kernel | Portals
= Builds on lessons from ASCI Red, Cplant, Red Storm ] Kitten
= Utilizes scalable parts of Linux environment ] |
=  Primarily supports direct hardware mapping / _
Advanced (%' 2
Architectures s | S
. . Testbeds S| E
SPR is the Experimental Platform for Extreme-scale R&D o|®n




Task & Network Runtime Init. & Wiz

Process 0 Process 1




Sandia

Task & Network Runtime Init. & W&

Process 0 Process 1

task magic task magic
happens happens

ooy | | o




Progress engine start up

Process 0 Process 1




@ '11 ﬁaa{ligil?al

Application initialization

Process 0 Process 1

task magic
happens

task magic
happens

"main task"

ﬁ




Process 0 Process 1

Sandia
National
Laboratories

—
/

— _
Data Movement in the SPR

* Blocking and non-blocking put and get operations
* (Calling task suspends, only resumes after completion event
* Progress engine only responsible for FEB operation




Process 0 Process 1

Sandia
National
Laboratories

\
J
\
J

{

—
Work Migration in the SPR

* Added gthread_fork_remote(..., rank)
* No synchronization in the progress engine

*  Remote synchronization managed through FEB semantics




.
°%e
Ses2ee

Chapel with a Unified Runtime & M.

= Replaced GASNet and Qthreads with SPR
= Single point for initializing both platforms: spr_init(SPMD,...)

= spr_unify() used to transition to single thread of control before
application starts

= Most other interface functions are no-ops (e.g., chpl_task_init(),
chpl_comm_post_task_init(), chpl_comm_rollcall(), ...)

= Direct mappings for data movement and work migration

= Cleaner Chapel Runtime Support shim
= Centralized information management

= But just an early point design



Sandia
.;.;;@z_:_:;: m National

Opportunities Moving Forward % @

= Let third-party implementers worry about
= |Information management
= Coordinated resource management
= |ntegrated local and remote task management

= Reorient Chapel Runtime Support shim interface around
unified “locality engine” (CHPL_LE=?)
= Remove runtime silos

= Focus on communicating information about data movement and work
migration to unified runtime layer

= Open up runtime ecosystem to the increasing assortment of unified
runtimes: HPX, GMT, Grappa, etc.

= Start a runtime-centric working group to coordinate efforts
between compiler writers and RS implementers




