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Emergent radiation 
depends on opacity
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Challenge: create and diagnose stellar interior conditions on earth 

Z opacity experiments reach T ~ 156 eV
High T enables first studies of transitions important in stellar interiors
Measurements establish Z opacity science platform

Fe / Mg transmission at T ~ 156 eV

Laboratory experiments test opacity models 
that are crucial for stellar interior physics



• measured boundary
RCZ = 0.713 + 0.001

• Predicted RCZ= 0.726

• Thirteen  difference

Bahcall et al, ApJ 614, 464 (2004).
Basu & Antia ApJ 606, L85 (2004).

• Boundary location depends on radiation transport
• A 1% opacity change leads to observable RCZ changes.
• This accuracy is a challenge – experiments are needed to know if the 
solar problem arises in the opacities or elsewhere.
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Modern solar models disagree with observations. 
Why? 



• transitions in Fe with L-shell vacancies are important in the sun
•First: study this class of transitions
•Second: study density effects
•Third: study mixtures

Opacity experiment priority: produce the 
charge states found in stellar interiors

Fe at 293 eV, 4 x 10 23 cm-3
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Fe at 182 eV, 9 x 10 22 cm-3

Radiation/convection boundary
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Z experiments investigate Fe L-shell 
configurations that are important in the sun
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Fe + Mg at Te ~ 156 eV, ne ~ 6.9x1021 cm-3

Fe XVI-XX

Mg XI
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• Mg is the “thermometer”, Fe is the test element

• Mg features analyzed with PrismSPECT, Opal, RCM, PPP, Opas

Fe & Mg 
sample

radiation
source

X-rays

J.E. Bailey et al., PRL accepted (2007)

Z opacity experiments reach T ~ 156 eV, two 
times higher than in prior Fe research



Red = thick sample
Blue = scaled thin sample
T1 = T2

(x1/x2)

1050 1150 1250
h (eV)

0.2

0.4

0.6

0.8

tr
a
n

s
m

is
s
io

n

Transmission scaling with thickness is an 
important test for experiment reliability

Un-desired effects such as self emission, gradients, transmission 
errors all tend to change the transmission scaling with thickness



Modern detailed opacity models are in remarkable 
overall agreement with the Fe data 
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Red = OPAS
OPAS team, CEA
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Strategy for stellar opacity evaluation 

• Applications may or may not require “spectroscopic accuracy”

• But we cannot test models under all conditions for all elements

• We need a thorough physical understanding

• Determine 2 () for each model

• Evaluate whether residual experiment flaws could cause discrepancies

• Refine model physics to reduce 2

•Consider models with lowest 2 as benchmark for stellar applications



Detailed comparisons advance understanding of 
physical processes 
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Future : evaluate impact of present data on solar 
models and design higher density experiments 

• Question: Can this work tell us whether prior solar opacities were accurate 
to better than 20%?

• Construct Rosseland and Planck mean opacities

• Compare:

Data to modern detailed models

Data to prior models used in solar application

Modern models to prior models (extend h range)

• With reasonable understanding for this class of L-shell transitions, now 
we are ready for new experiments:

Increase density

Alter sample composition (e.g., Fe & O in CH2 plasma)
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Challenge: create and diagnose stellar interior conditions on earth 

Z opacity experiments reach T ~ 156 eV
High T enables first studies of transitions important in stellar interiors
Measurements establish Z opacity science platform

Fe / Mg transmission at T ~ 156 eV

Laboratory experiments test opacity models 
that are crucial for stellar interior physics


