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Maltodextrin is a polysaccharide suitable for s
synthesizing and dispersing silver nanomaterials

Laboratories

(1-4) linkage

Kb\J o s

Maltodextrin is contained in the
Soylent product recipe, designed by
software engineer Rob Rhinehart to
meet all human nutrient needs in

Maltrin® MO40 Uses:

» Powdered carbohydrate minimal preparation time. J
N Fat or oil replacer in food formulations http://en.wikipedia.org/wiki/File:Homemade 4
-Soylent.jpg N

* Spray drying aid due to low hygroscopic behavior
* Film forming aid in personal care products
« Pharmceutical binder and ceramic processing aid

Grain Processing Corporation




Maltodextrin Solutions Associate into )
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Structures and Crystallites

= SAXS and Light scattering studies of
maltodextrin solutions establish the
self assembly of oligomers into larger
structures. Oblate spheroids of about
280 nm diameter and thickness of
28-36 nm.

= (Crystallite regions of 17 nm were also
modeled in maltodextrin gels.

=  Many investigations explore the
interaction of silver nanosynthesis
within biopolymer structures, like
Starch.

= This study investigated how
oligomeric derivatives of starch (i.e.
Maltodextrin) acts as a reactive
medium.
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Silver reactions with

maltodextrin were performed
< D using AgNQO,, dissolved
| Maltrin MO40, and KOH in
deionized water using
benchtop chemical

techniques.
 Low shear rate, no micro-
reactor design.




Maltodextrin becomes a reducing ) e
sugar as pH is increased

= AgNOj; solutions weakly react
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TEM Analysis shows Single Crystal and (@)
Twinned particles, with {111} termination

= After 24 hours of reaction, a dispersion of silver nanoparticles is
found ranging from 5 -50 nm in diameter, with no agglomeration.

The shape and structure of the particles is common to
starch protected Ag-np, both from solution and from
micro-reactor synthesis.
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Alkaline reaction of AgNO, with Reducing ().
Sugars are expected to undergo two
precipitations

1. Initially, Ag* react to form Ag,0 precipitates.
2 Ag* + OH- — Ag,0 (s) + H*
2. Silver np are formed by dissolution-precipitation or direct

conversion. R-CH=0 + 2[Ag*OH-] — R-C(OH)=0 + 2Ag + H,0

oxide and hydroxide.
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F1G. 3. Influence of pH on the solubility of Ag,O and AgOH, at 25°C.

M. Pourbaix, Atlas of Electrochemical Equilibria,
Section 14.2 Silver, Pergamon Press, Oxford 1966.



Reaction Kinetics were followed using

UV-Vis Spectrometry

The Initial Material is
absorbing near 300
nm with a broad peak.

UV-Vis spectra show a
transition between
two peaks with the
reaction time.

For kinetic
comparison, peak
intensities were
normalized to a total
value of 1, based on
both materials.

Normalized data were
converted into surface
plots for comparison
of the reaction
process.
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A pH of 12.5 Gives Uniform Nanoparticles @&,
In Six Hours
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Raman Spectroscopy of Reacting
Materials Does Not Show Ag,0

= Raman spectra do not match

Ag,0 expectations. : o
There are bands at 85, 460(sh), 530, 600 F  —— 90 min
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SAXS Measurement Found Size Focusing
Growth of Uniform 5 nm Ag Nanoparticles

The formation of Ag np between 150
and 200 minutes is in good agreement
with the formation of the UV-vis peak
at 400 nm.

The particle uniformity becomes very
good in this timeframe as well, even in
this stirred reactor system.

Increasing time, 10 to 370 minutes
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Additional Aggregation with Reaction Time
Shows Colloidal Instability
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The H-bonding Character of the Solvent ) .
Controls Colloidal Stability of the Nanoparticles
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Hildebrand parameter

For each solvent § (MPa'/2)
Water 47.9
Methanol 29.6
Ethanol 26.0
Isopropanol 23.5
Acetone 20.2

Aggregation is induced by
non-H-bonding solvent
character, establishing the
surface adsorption of
maltodextrin to Ag np via
hydroxyl groups.

Methanol washes can be used to obtain cleaned suspensions without aggregation.
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Summary and Conclusions

» A simple benchtop reaction shows that Maltodextrin behaves as a
sugar reducing agent, and a colloidal stabilizer.

« The initial precipitate differs from the expected Ag,O, and an unknown
species characterizes the initial stages of the reducing reaction.

* Very uniform ~5 nm diameter nanoparticles are formed in the first 6
hours, as is characteristic of the size focusing regime for high soluble
species growth.

« Further aging leads to 30-35 nm particles that are very similar to starch
synthesis examples.

* Increasing maltodextrin concentrations lead to larger supermolecular
structures, but the particle size stabilizes at 30-35 nm.

 In this second stage, association and fusion are proposed to lead to the
larger particle size.

« The association forces between the silver nanoparticles and the
maltodextrin are related to the hydrogen bonding character of the
solvent, suggesting weak surface bonding.



