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INTRODUCTION
Fast burst reactors are able to achieve intense neutron 

pulses for very short durations by assembling the reactor 
into a super prompt critical state.  Sandia has operated the 
Sandia Pulse Reactor III (SPR-III), a fast burst reactor, 
over the past few decades in a pulse configuration.3  As 
reactivity is being inserted into the reactor, it is possible 
for the prompt excursion to take place prior to the full 
reactivity state being reached.  When this occurs, the 
reactor is said to pre-initiate.  Without an external source 
present, the reactor is operating under weak source 
conditions and the initial buildup of neutrons in the 
reactor is said to be stochastic.4  The non-extinction
probability that a neutron will exist at a later time from an 
initial source neutron is the focus of this paper.  The 
results presented below highlight our initial efforts to 
describe the time dependent behavior of SPR.  Others 
have also presented results for multiplying systems as 
well as point models.5

THEORY
The physics governing the non-extinction probability

(frequently call the survival probability), for multiplying 
systems has been previously derived.1  The backwards 
survival probability equation for a one dimensional slab 
with monoenergetic neutrons is presented with seven term 
fission multiplicity data.  In this equation ),,( txp s  is the 

probability that a neutron will still exist at some time t in 
the past, at some position x, traveling in some direction µ, 
given that a source neutron was injected at some final 
time tf.
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with: 
ftt  , and Lx 0 subject to vacuum and 

terminal boundary conditions:

  0,,0 tps  for 0

  0,, tLps  for 0

0.1),,( fs txp  for 11  

Using a shifted time variable, the backwards equation 
can be shifted to a forwards equation.  In addition, the 

angular variable is interchangeable    as the 

probability profile is symmetric.  With the exception of 
the fifth term being non-linear, the equation is similar to 
the standard adjoint neutron transport equation.  Solution 
of the survival probability gives a time dependent 
representation for any surviving neutron in the reactor.  In 
addition, the probability of initiation (POI) can be found 
by taking the limit as time goes to negative infinity.1  
Bell’s quadratic POI approximation is a scalar steady state 
value which gives the probability that a source neutron 
will lead to a divergent chain for infinite time. The steady 
state (SS) POI is itself only a function of constants, 

namely  , k, and 2 .  This SS value provides an 

effective benchmark on the time dependent solution as the 
final survival probability must asymptote to the POI at 
long times.  For the low reactivity rates of interest, there 
is minimal difference between the quadratic 
approximation and the complete fission multiplicity data 
at long times.

1-D RESULTS
The survival probability equation in 1-D is implicitly 

solved using a source iteration routine with a time lagged 
source.  For the lagged source, the solution from the 
previous time step is used as a constant source over the 
next time interval.  Within a given time step both outer 
and inner iterations are used.  Both the linear and non-
linear fission terms are held constant over an outer 
iteration.  During the inner iteration the fission source and 
the time lagged source are held fixed and the scattering 
term is iterated upon.  Upon convergence of the inner 
iteration a new fission term is computed in the outer 
iteration.  This is then held constant over the next inner 
iteration.  Upon convergence of both the inner and outer 
iterations using relative error criteria, the simulation is 
advanced by a timestep.  This iteration scheme is shown 
in the equations below.  The standard Sn approximation is 
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invoked on the angular domain [-1,1] which is 
approximated with Gauss-Legendre quadrature ordinates.  
Both the spatial and time domains utilize diamond 
differencing.  Given equation 1 is non-linear, simplistic 
iteration and differencing schemes were used until 
sufficient information was gathered to determine where 
more refined methods are appropriate.
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To establish the system reactivity versus slab 
thickness a standard k-eigenvalue iteration is performed 
prior to solving the survival probability equation.  The 
non-linear terms are ignored and the fission term is 
modified by the standard 1/keff and iterated upon until 
convergence is achieved.  With the linear system 
reactivity established, the survival probability equation is 
solved forwards in time.  As a means to verify the code, 
reflective boundary conditions were placed on the slab 
and the time dependent results agree well with 0-D results
not presented here.  We present results for a slab with 
fixed system reactivity and vacuum boundary conditions.  
Monoenergetic cross-sections appropriate for SPR-III 
were used.  Figure 2 plots the time dependent angular 
integrated solution for various integration time steps.  The 
values plotted in the figure are taken to be the slab mid 
points.  In addition for the 1ns timestep, the time 
dependent slab edge value is also shown.  The lifetime for 
this system was assumed to be 10ns.

Fig. 2. 1-D slab survival probability v. time.

As the timestep becomes increasingly small, there is 
negligible change in the time dependent solution.  As 
larger time steps are selected large deviations are seen in 
the initial time dependent behavior; however, regardless 
of the timestep selected the steady state solution is 
achieved.  In addition, note that the slab edge and 
midpoint values follow the same time dependent behavior 
but converge to different steady state values.

Both the inner and outer iterations are performed 
until the relative error criteria is reached.  As the relative 
error criteria is relaxed, the total number of inner and 
outer iterations decreases rapidly.  In addition, as the time 
dependent solution is quickly changing around the 
insertion time, the total number of inner and outer 
iterations is relatively high shortly after the insertion time.  
Table 1 below shows the results for the average number 
of inner and outer iterations for a simulation time up to 
10-5 seconds.  Beyond this time, the number of inner and 
outer iterations needed for convergence is on the order of 
a few as the solution has nearly approached the SS 
asymptotic value.  The results in the table are provided for 
two different relative errors.  As higher relative error 
criteria are imposed, drastic changes are seen in the 
number of required iterations.  Given the potential for 
large numbers of inner iterations suggests that techniques 
such as Diffusion Synthetic Acceleration (DSA) may be 
beneficial.

TABLE I. Iterations for 10-8 / 10-5 relative error
Time step 

(ns)
Average Number of 

Outer Iterations
Average Number of

Inner Iterations
100 2.2 / 1.3 6.4 / 1.5
101 3.4 / 1.8 34.1/ 3.2
102 14.6 / 2.2 242.3 / 14.3
103 105.5 / 3.4 1884.7 / 45.0



Since the system reactivities of interest are slightly 
above prompt critical a large number of inner and outer 
iterations are required.  For system reactivities that are 
sufficiently high, the total number of inner and outer 
iterations is on the order of a few across the entire time 
domain.  In addition, the cross-section set used was for a 
fast system where scattering is the dominant reaction.  If 
thermal data are used rapid convergence for all prompt 
reactivities are seen.  Thus given the reactivity regime of 
interest as well as the highly scattering media suggests 
that numerical simulation of the survival probability is 
particularly taxing for this problem.

At the initial insertion time, there is an equal 
probability everywhere identical to unity as the source 
neutron in injected at this time.  Figure 3 below shows the 
survival probability in the slab.  At various times from the 
insertion time the spatial mode quickly develops and then 
decreases as a function of time.  The spatial solution 
decreases with time until the SS static solution is 
achieved.

Fig. 3. Spatial probability at fixed times.

The results presented above are for a system that is 
just slightly above prompt critical (kp = 1.0007).  It is of 
interest to show the non-extinction probability for 
different system reactivities.  For sub prompt critical 
systems, the survival probability must go to zero while for 
super prompt critical systems it has been shown to 
approach a constant value.1  For different slab 
thicknesses, the slab midpoint time dependent solution is 
shown in Figure 4.

Fig. 4. Time dependent survival probability for different 
slab thicknesses.

For systems that are highly subcritical, the non-
extinction probability drops rapidly suggesting that a 
given chain will die away quickly.  For critical systems 
the solution behaves according to a decaying exponential.  
For super prompt critical systems, the solution approaches 
the SS constant value.  The higher the system reactivity, 
the quicker it approaches the SS value and is of higher 
magnitude.

CONCLUSION
The time dependent survival probability equation has 

been solved for both a 0-D and 1-D system.  The reflected 
1-D solution has excellent agreement with the 0-D time 
dependent results.  The non-extinction probability 
equation is solved under varying numerical conditions.  
For large time steps the steady state POI value is
obtained; however, the initial time dependent survival 
probabilities are incorrect.  The relative error criteria and 
simulation timestep can have a drastic impact on the 
number of simulation iterations.  The spatial survival 
probability at various times is also shown.  In addition, 
the behavior for different slab thicknesses is also 
presented.  In future work, time dependent reactivity will 
be investigated in the 1-D model in a manner that is 
appropriate to SPR.  In addition, data taken from SPR-III 
over the operational lifetime will be compared with the 
theoretical results as a means to benchmark the results.
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