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INTRODUCTION

Fast burst reactors are able to achieve intense neutron
pulses for very short durations by assembling the reactor
into a super prompt critical state. Sandia has operated the
Sandia Pulse Reactor III (SPR-III), a fast burst reactor,
over the past few decades in a pulse configuration.” As
reactivity is being inserted into the reactor, it is possible
for the prompt excursion to take place prior to the full
reactivity state being reached. When this occurs, the
reactor is said to pre-initiate. Without an external source
present, the reactor is operating under weak source
conditions and the initial buildup of neutrons in the
reactor is said to be stochastic. The non-extinction
probability that a neutron will exist at a later time from an
initial source neutron is the focus of this paper. The
results presented below highlight our initial efforts to
describe the time dependent behavior of SPR. Others
have also presented results for multiplying systems as
well as point models.’

THEORY

The physics governing the non-extinction probability
(frequently call the survival probability), for multiplying
systems has been previously derived.' The backwards
survival probability equation for a one dimensional slab
with monoenergetic neutrons is presented with seven term
fission multiplicity data. In this equation p (x, u,r) is the

probability that a neutron will still exist at some time t in
the past, at some position X, traveling in some direction p,
given that a source neutron was injected at some final
time ty.
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with: o << t, and 0 < x < L subject to vacuum and
terminal boundary conditions:
p.(0,u,¢)=0 for <0
p.(L,pu,t)=0 for 1 >0
po(x ) =10 for -1< <1

Using a shifted time variable, the backwards equation
can be shifted to a forwards equation. In addition, the

angular variable is interchangeable (u = —u) as the

probability profile is symmetric. With the exception of
the fifth term being non-linear, the equation is similar to
the standard adjoint neutron transport equation. Solution
of the survival probability gives a time dependent
representation for any surviving neutron in the reactor. In
addition, the probability of initiation (POI) can be found
by taking the limit as time goes to negative infinity.'
Bell’s quadratic POI approximation is a scalar steady state
value which gives the probability that a source neutron
will lead to a divergent chain for infinite time. The steady
state (SS) POI is itself only a function of constants,

namely v, k, and ¥ ,. This SS value provides an

effective benchmark on the time dependent solution as the
final survival probability must asymptote to the POI at
long times. For the low reactivity rates of interest, there
is minimal difference between the quadratic
approximation and the complete fission multiplicity data
at long times.

1-D RESULTS

The survival probability equation in 1-D is implicitly
solved using a source iteration routine with a time lagged
source. For the lagged source, the solution from the
previous time step is used as a constant source over the
next time interval. Within a given time step both outer
and inner iterations are used. Both the linear and non-
linear fission terms are held constant over an outer
iteration. During the inner iteration the fission source and
the time lagged source are held fixed and the scattering
term is iterated upon. Upon convergence of the inner
iteration a new fission term is computed in the outer
iteration. This is then held constant over the next inner
iteration. Upon convergence of both the inner and outer
iterations using relative error criteria, the simulation is
advanced by a timestep. This iteration scheme is shown
in the equations below. The standard Sn approximation is
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invoked on the angular domain [-1,1] which is
approximated with Gauss-Legendre quadrature ordinates.
Both the spatial and time domains utilize diamond
differencing. Given equation 1 is non-linear, simplistic
iteration and differencing schemes were used until
sufficient information was gathered to determine where
more refined methods are appropriate.
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To establish the system reactivity versus slab
thickness a standard k-eigenvalue iteration is performed
prior to solving the survival probability equation. The
non-linear terms are ignored and the fission term is
modified by the standard 1/k.s and iterated upon until
convergence is achieved. = With the linear system
reactivity established, the survival probability equation is
solved forwards in time. As a means to verify the code,
reflective boundary conditions were placed on the slab
and the time dependent results agree well with 0-D results
not presented here. We present results for a slab with
fixed system reactivity and vacuum boundary conditions.
Monoenergetic cross-sections appropriate for SPR-IIT
were used. Figure 2 plots the time dependent angular
integrated solution for various integration time steps. The
values plotted in the figure are taken to be the slab mid
points. In addition for the Ins timestep, the time
dependent slab edge value is also shown. The lifetime for
this system was assumed to be 10ns.
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Fig. 2. 1-D slab survival probability v. time.

As the timestep becomes increasingly small, there is
negligible change in the time dependent solution. As
larger time steps are selected large deviations are seen in
the initial time dependent behavior; however, regardless
of the timestep selected the steady state solution is
achieved. In addition, note that the slab edge and
midpoint values follow the same time dependent behavior
but converge to different steady state values.

Both the inner and outer iterations are performed
until the relative error criteria is reached. As the relative
error criteria is relaxed, the total number of inner and
outer iterations decreases rapidly. In addition, as the time
dependent solution is quickly changing around the
insertion time, the total number of inner and outer
iterations is relatively high shortly after the insertion time.
Table 1 below shows the results for the average number
of inner and outer iterations for a simulation time up to
10 seconds. Beyond this time, the number of inner and
outer iterations needed for convergence is on the order of
a few as the solution has nearly approached the SS
asymptotic value. The results in the table are provided for
two different relative errors. As higher relative error
criteria are imposed, drastic changes are seen in the
number of required iterations. Given the potential for
large numbers of inner iterations suggests that techniques
such as Diffusion Synthetic Acceleration (DSA) may be
beneficial.

TABLE . Tterations for 10°/ 107 relative error

Time step | Average Number of | Average Number of
(ns) Outer Iterations Inner Iterations
10° 22/13 6.4/1.5
10" 34/18 34.1/3.2
107 14.6/2.2 242.3/14.3
10° 105.5/3.4 1884.7 /45.0




Since the system reactivities of interest are slightly
above prompt critical a large number of inner and outer
iterations are required. For system reactivities that are
sufficiently high, the total number of inner and outer
iterations is on the order of a few across the entire time
domain. In addition, the cross-section set used was for a
fast system where scattering is the dominant reaction. If
thermal data are used rapid convergence for all prompt
reactivities are seen. Thus given the reactivity regime of
interest as well as the highly scattering media suggests
that numerical simulation of the survival probability is
particularly taxing for this problem.

At the initial insertion time, there is an equal
probability everywhere identical to unity as the source
neutron in injected at this time. Figure 3 below shows the
survival probability in the slab. At various times from the
insertion time the spatial mode quickly develops and then
decreases as a function of time. The spatial solution
decreases with time until the SS static solution is
achieved.

10° 3
’ - T~
10"F E
2
=
S0k —
2
o
Eg
10 F L E
I S T -1
w Pl Insertion time * ™ -
[ — — — t-t(s)=1.0E-008 ]
10° b tt(s)=1.0E-007 |
E t-t (s)=1.0E-006
t-t(s)=1.0E-005 {
————— t+(s)=1.0E-004 ]
r — — — tt(s)=1.0E-002 ]
10’5|\\\|\|\\l\\\\l\\\ll\\\\l\\\\ll\l\l\\\\l\l\\l\\

0 1 2 3 8 9

4 5 6
Position (cm)

Fig. 3. Spatial probability at fixed times.

The results presented above are for a system that is
just slightly above prompt critical (k, = 1.0007). It is of
interest to show the non-extinction probability for
different system reactivities. For sub prompt critical
systems, the survival probability must go to zero while for
super prompt critical systems it has been shown to
approach a constant value.' For different slab
thicknesses, the slab midpoint time dependent solution is
shown in Figure 4.
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Fig. 4. Time dependent survival probability for different
slab thicknesses.

For systems that are highly subcritical, the non-
extinction probability drops rapidly suggesting that a
given chain will die away quickly. For critical systems
the solution behaves according to a decaying exponential.
For super prompt critical systems, the solution approaches
the SS constant value. The higher the system reactivity,
the quicker it approaches the SS value and is of higher
magnitude.

CONCLUSION

The time dependent survival probability equation has
been solved for both a 0-D and 1-D system. The reflected
1-D solution has excellent agreement with the 0-D time
dependent results. The non-extinction probability
equation is solved under varying numerical conditions.
For large time steps the steady state POI value is
obtained; however, the initial time dependent survival
probabilities are incorrect. The relative error criteria and
simulation timestep can have a drastic impact on the
number of simulation iterations. The spatial survival
probability at various times is also shown. In addition,
the behavior for different slab thicknesses is also
presented. In future work, time dependent reactivity will
be investigated in the 1-D model in a manner that is
appropriate to SPR. In addition, data taken from SPR-III
over the operational lifetime will be compared with the
theoretical results as a means to benchmark the results.
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