SAND2008- 0801C

NF-kB shuttling patterns in single cells:

Jaewook Joo, Steve Plimpton, and Jean-Loup Faulon
Computational Systems Biology Dept.
Sandia National Labs



Overview of NF-kB signal transduction network
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Latin Hypercube Sampling of input parameters
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Output: Distribution of dynamic features of nuclear NF- kB response

* Latin Hypercube sampling of 71 input variables (70 kinetic rates & 1 |.C.)
uniformly from an interval ( xo (1-f), xo (1+f) ) where xo is a nominal value
and f =70%

* Typical sample size: 1,000 to 10,000 ODE simulations



Transcription model
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Total NF-kB & volume ratio dependent “phase
transitions” of NF-kB shuttling patterns (HM=x)
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Noise-induced oscillatory NF-kB shuttling (HM==)
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Criteria for noise-induced oscillation:
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The left phase diagram is only obtained from 18 % of the kinetic conditions. But, the stochastic system results in
transition from DAMP to NIO as two variables are changed from low to high values at almost 99 % of kinetic conditions.
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Total NF-kB & volume ratio dependent “phase
transitions” of NF-kB shuttling patterns

100.00% -

80.00%

60.00% - 0 Sined 06
B Darrped (6

40.00% - :;fdp;%d

20.00%

0.00% A — .
HVEORM  HV=100nM HV=10000v1 HVE20M  HVE100nM  HVE1000rvI
Low NF-kB & Kv High NF-kB & Kv

HM = K orr




'_\
(86] O

ay

Volume ratio of cytoplasm to nucleus
BN W=

Noise-induced phase transitions of NF-kB shuttling

(HM=100 nM)
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j3 The left sided phase diagram is obtained out of 8% of kinetic conditions. However, When the 30 % of the same kinetic
conditions yield the transition from the DAMP to the NIO as two variabels are changed from low to high values. This is
why I denote 30% instead of 8%.

Likewise, for the unchanged phases, DAMP is 68 % with deterministic system but it is changed to 46 %.
jjoo, 1/14/2008



Reduction of full model to minimal model:
Renormalization of kinetic rate variables
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Linear Fokker Planck equation for
stochastic minimal model
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A is a linear function of é A4, = ZM aﬂéﬂ
B

M is a matrix without 5 :

B is a noise covariance matrix and responsible for noise amplifiaction.

Equivalence of linear FP equation with Langevin equation :

dizf) M-E@)+n(®; (100, () =B8(t=1)

Power Spectrum :
Pa(a))=<<§ (w)ég(w)>
_Z( ~iwE-M)} B, [(~ioE-M)'T,

We calculate power spectrum from M and B.



Noise-induced oscillatory domain:
stochastic minimal model
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Conclusion

Sensitivity analysis reveals that the NF-kB dynamics
critically depends on total NF-kB concentration and volume
ratio of cytoplasm to nucleus.

Deterministic full hybrid model generates the dynamic
instability when both total NF-xB concentration and volume
ratio are large.

Noise expands the instability domain of NF-kB, 1.e.,
emergence of noise-induced oscillation of NF-kB at its
natural frequency.

Stochastic minimal model qualitatively reproduces the
noise-induced oscillation of NF-kB whereas 1ts deterministic
counterpart has only stable fixed point.
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