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Outline

• Factor analysis (FA) of hyperspectral images

– Can extract spectral and concentration profiles 
for differentiable chemical species

– Problems in phase classification: number of 
components cannot exceed chemical rank

• Advantages of clustering in phase classification

– Parsimony restriction lifted: number of 
components can exceed chemical rank of data

• Comparison of FA and clustering for two 
hyperspectral image sets

– Solder bump data set

– Four phase braze interface data set



Spectral Imaging and Factor Analysis
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Factor analysis, D = CST

D= f(x, y, )

The goal of Factor Analysis it to 
estimate:

S, “what is it?”
C, “where is it and how much?”

“Data
cube”

A spectral image 
comprises a complete 

spectrum at each 
point in a spatial array 

(1-, 2-, 3-D)



Limitations of FA for Phase 
Classification: Solder Bump Data

• FA parsimony restriction: number of extracted 
components cannot exceed chemical rank of data

– FA fails to identify Cu-Sn intermetallic phase
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Clustering: Group Data Points Based 
on Nearness in Multivariate Space

• Partional clustering (fuzzy c-means) requires very 
limited prior information:

– Number of clusters in data set

– Initial set of cluster centers 

Four cluster centers (    ) initialized
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Update cluster centers 
and group 
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convergence achieved



Cu-Sn Intermetallic Phase Identified 
by Clustering: Solder Bump Data

• Clustering extracts Cu-Sn intermetallic phase: 
number of phases can exceed chemical rank! 
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Data points in 3-D PCA 
scores space

Clustering, D = CST

(Fuzzy c-means, m = 1.3)

Clustering estimates:
• S, spectrum for each 
group
• C, group assignment     
for each pixel

Pixel group assignments

Cu, Sn and Cu-Sn spectra
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• Fuzzy c-means clustering provides for partial 
group memberships (values lie between 0 and 1)

Clustering Applied to Solder Bump 
Data

Crisp pixel group assignments

Fuzzy memberships (Cu phase)

Fuzzy memberships (Sn phase)

Fuzzy memberships (Cu-Sn phase)
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Braze Interface Data

RGB composite EDX image
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• Biased phase estimates obtained using FA:

Braze Interface Data: Factor Analysis 
(Non-Negativity Constrained MCR)

Fe-Ni-Co phase Ag phase

Cu phase Ti phase
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Braze Interface Data: Clustering

• Superior phase classification results obtained 
using clustering (fuzzy c-means, m = 2):

RGB composite EDX image

Crisp pixel assignments

Fe-Ni-Co spectra (FCM vs. CLS)
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Braze Interface Data: Clustering

• Fuzzy membership images match expectations:

Fe-Ni-Co phase
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Conclusions

• Clustering can solve phase problems which are 
intractable using FA (e.g., solder bump data)

– In FA, number of phases cannot exceed 
chemical rank of data

– In clustering, number of phases cannot exceed 
the number of pixels in image

• Braze interface data demonstrates that clustering 
can avoid bias problems encountered using FA


