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Hydrogen embrittlement of 
steels can be managed 
provided fracture properties 
are measured under relevant 
mechanical and environmental 
conditions. These fracture 
property measurements 
enable the implementation of 
both fundamental mechanistic 
models as well as structure 
lifetime models.

Technical Approach:
• Measure properties of pipeline steels in high-

pressure H2 gas using fracture mechanics methods
– fatigue crack growth rates under cyclic loading
– thresholds for sustained-load crack growth

• Assess measured properties by predicting steel 
pipeline lifetime using structural integrity models

• Identify and measure fundamental parameters in 
mechanistic models of hydrogen embrittlement

– thermal desorption spectroscopy (TDS) gives 
interaction energy between H and steel defects

Enabling Hydrogen Embrittlement Modeling of Structural Steels 

Impact:
Hydrogen embrittlement can be accommodated and 
steel pipeline safety margins can be quantified
through measurement of fracture mechanics 
properties coupled with structural integrity and 
mechanistic models

Project Overview:
• Provide fracture properties for pipeline steels in H2

gas to enable implementation of hydrogen 
embrittlement and structural integrity models

Technical Targets (2017):
• $490k/mile capital cost for transmission pipelines
• $190k/mile capital cost for distribution pipelines
• Hydrogen delivery cost below $1.00/gge
• High reliability
• Low hydrogen permeation



Materials testing motivated by design method

• Article KD-10 in ASME BPV Code Section VIII, Div. 3
– applies to H2 pressure vessels and pipelines
– design method identifies two H2-assisted failure modes: 
fatigue crack growth and sustained-load cracking

• Requires materials data in high-pressure hydrogen gas for 
fracture mechanics-based structural integrity models
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Calculate number of pressure cycles to reach 
critical crack depth for three cases

• Case 1: t=0.330 in (σh=65% SMYS) and ao/t=0.10

• Case 2: t=0.500 in (σh=43% SMYS) and ao/t=0.10

• Case 3: t=0.500 in (σh=43% SMYS) and ao/t=0.05
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Number of pressure cycles vs crack depth 
relationships: H2 compared to inert gas

Hydrogen embrittlement results in reduced number 
of pressure cycles to reach critical crack depth
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Number of pressure cycles vs crack depth 
calculated for three cases

number of pressure cycles, N
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Stress intensity factor range, ∆K  (ksi⋅in1/2)
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•Lifetime depends on both material data and structural design
•Hydrogen embrittlement can be accommodated and safety 
margins can be quantified



Hydrogen embrittlement of X100 line pipe steel

• Alloy composition

• Yield strength
– 96 ksi (662 MPa) in longitudinal (L) orientation
– 114 ksi (787 MPa) in circumferential (C) orientation
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Measurement of sustained-load cracking thresholds

• Specimen loaded to Ko>KTH using 
bolt while contained in glove box 
(Ar with ~1 ppm O2)

• Loaded specimen exposed to H2, 
crack extends after incubation time

• Crack arrests at K=KTH
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High-pressure H2 gas severely degrades crack 
propagation resistance of X100 steel

X100 in 15 kpsi H2 gas

X100 in air
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Implication of sustained-load cracking thresholds 
assessed from structural design model

• Calculate critical crack depth, ac, for X100 
hydrogen pipeline operating at p = 21 MPa pressure
– assume axial flaw with infinite length
– assume Ri = 15 cm, t = 1.3 cm
– hoop stress σh = 260 MPa (37% SMYS)
– measured KTH = 85 MPa-m1/2 in 21 MPa H2 gas
– ac = 0.6 cm (ac/t = 0.45)
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Incubation time for crack extension depends on Ko
and hydrogen gas pressure

Procedures for measuring sustained-load cracking thresholds 
should not prescribe arbitrary test durations
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Crack branching may account for absence of 
H2-assisted crack extension at low Ko

Initial stress intensity factor, Ko  (ksi⋅in1/2)
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Crack branching shields “applied” K

• Klocal is the “local” stress intensity factor driving branched crack

• Kapp is the remote applied stress intensity factor, not accounting 
for branching

• Klocal/Kapp=0.662 implies that the stress intensity factor driving each 
crack branch may be much less than the intended Kapp

• Klocal > KTH for crack to propagate, regardless of Kapp

Example for symmetrical branched 
crack with a’/a =0.01: Klocal/Kapp=.662

(Vitek, Int. J. Fracture, 1977)

aa’
45o



Applied Ko to cause cracking is consistent with 
branch shielding effects

Precrack

a=31mm    
a’=~.1mm

a’/a=.0033

Extrapolate from Vitek’s calculations 
for a’/a=0.0033  
Klocal/Ko=.69

Highest Ko for no 
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fracture profile
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Klocal at crack branch must exceed KTH
for crack to propagate

Ko > ~1.5(KTH) for Klocal > KTH

3AAX 0.62 < Kth/Ko < 0.70
3T 0.52 < Kth/Ko < 0.60
SA372 grade J 0.70 < Kth/Ko < 0.76
X100 0.53 < Kth/Ko < 0.67



Measured KTH values depend on Ko

Does proximity of arrested crack to back face of 
specimen affect KTH measurement?
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Mechanics of propagating crack may account 
for relationship between Ko and KTH

Do decreasing K and back-face deformation affect 
mechanical conditions at tip of long crack?
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New specimen designed to eliminate effect of Ko

• Increase aspect ratio of WOL specimen to resemble double-
cantilever beam (DCB) specimen
– mitigate back-face deformation
– increased ligament accommodates more crack extension



Physical models of fracture must be established to 
enable mechanistic hydrogen embrittlement models
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Example: hydrogen-assisted fracture in duplex 
stainless steel



Microscopy evidence used to develop physical 
model for hydrogen-assisted fracture in X100

Initial evidence suggests crack propagation 
involves cleavage fracture in ferrite

X100 in 100 MPa H2 gas:
crack profile

X100 in 21 MPa H2 gas:
fracture surface



Center for Fracture Physics

FRASTA Operation and Results

• Fractured Area 
Projection Plots 
(FAPPs)

• Cross-sectional 
Plots (XSPs)

• Fracture 
Progression 
Curve (FPC)



Center for Fracture Physics

Superposition of FAPPs over SEM (1)
(Higher Magnification)



System for measuring fatigue crack growth 
rates in high-pressure H2 gas

• Pressure vessel designed to contain H2
gas up to 20 kpsi (138 MPa)

• Challenges in testing and system 
design
– accurate load measurement
– effect of high-pressure H2 gas on 
instrumentation

– leak rates at dynamic seals
• Materials data serve as inputs for ASME 

design methodology in Article KD-10

vessel on mechanical test frame



Summary

• Structural integrity models for hydrogen pipelines require 
two sets of material data
– sustained-load cracking thresholds
– fatigue crack growth rates

• Conservative measurements of material properties are 
needed to ensure reliable safety factors
– identify variables that affect measurements

• Mechanistic models of hydrogen embrittlement must be 
based on detailed physical models of fracture


