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Mechanical response of materials depends on the microstructure of the material
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...captured by crystal plasticity...

= i o Crystal plasticity = Grain-level (mesoscale) approach

to materials modeling using multiscale strategies

o Explicitly model discrete grains and slip systems
(anisotropy, texture evolution,...)

PoncrysaI Single crystal Finite Slip

Element Modes
S~—— A J
T~ '
Balance laws Constitutive Models

— Advantage: predictive and robust theoretical framework
to understand polycrystal behavior

— Limitation: due to high # of ISVs (computational cost)

difference in length scale: discrete vs. continuum @ﬁaaggﬁal
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...with desired features

I

A

FEM / Crystal Plasticity
(grain level structure)

Experimental testing
(continuum mechanics)

k
Predicts sensitivity

to length scale
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Predicts Hall-Petch effect

—
(Relative) insensitivity of
hardening to microstructure
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— Focus on capturing the correct phenomenology
— Permit extension to existing constitutive foundation Sandia

National

— Permit implementation into existing finite element codes Laboratories



Topic of discussion

o

o Crystal Plasticity:

- An augmented kinematic description
- Capturing length scale with non-local formulation

o Application:
- Predicting Hall-Petch effect in FCC metals

- Crystallographic reorientation and local comparison with EBSD

o Summary and future perspectives...
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Crystal Plasticity
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V
b 4 ' Conventional formulation...

Ny i ] ]
Kinematics I =PPFr = Z}Y‘(g @ﬁa) Conve_ntlonal klnema_tlcs
a=1 describe the deformation,
Elasticity 57K = C° | starting from a reference polycrystal
I 14 "L'a F
Slip evolution X =M|——|sgn
Tcrss

(Power law viscoplastic flow rule)

Hardening law Tcrss = Cub4/p”

(Anisotropic Taylor hardening)

Dislocation density evolution
(Static and dynamic recovery)

o e
dy“zcl p —Cp

Fe

t=0

Soc. Lon., 319 p.247] National

[J.W. Hutchinson, (1970) “Elastic-plastic behaviour of polycrystalline metals and composites”, Proc. Roy. @ Sandia
[Estrin and Mecking, Acta Met. 32 (1984) p.57] Laboratories



k | ' with an augmented kinematics

Accounting for initial microstructure

— Based on a geometric argument
— Introduce a fictitious deformation relative to a hypothetical single crystal
— Establish crystal rotations necessary to produce grain boundaries (GBs)

Preliminary Kinematics Deformation Kinematics
F, F
____________________ Ref.
S.C. [ Additional Unchanged
P
Fh\ e
F

Initial GNDs*

Deformation GNDs

Sandia
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*Geometrically Necessary Dislocations Laboratories



Initial microstructure

Smaller grains generate a higher fraction of “hard” material nearby

o . . High PGND
Preliminary Kinematics '
F, I

Low pgnp

S.C. [

125um

t
Initial GNDs tensor G 20um

Il
o
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Non-local formulation

}'

Modeling length scale phenomena with non-local integral method
— Weighted average integral formulation for GND tensor

(G- J o E)GEM:

cell

— Length scale enters as a material parameter
(defines weighting function)
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yCapturing a length scale effect

Preliminary kinematics Non-local integral method

GB

i
&3
Kinematics behind G, — Initialize microstructure
Non-local approach —> Length scale
Impact hardening law — Téss = CGyoby) Py + Pl

Non-local formulation
of GND evolution
GTOt dpa o o o o
Peno=1" ‘ ﬁ = Cl\/pSSD TPenp ~ © (pSSD +pGND)

(Harder strength as one approaches the GB) ﬁ:nﬁgi:al

Laboratories

SSD evolution equation




Application

Sandia
[W.A. Counts (2006) “Predicting the Hall-Petch effect in FCC metals using non-local crystal plasticity”, PhD @ National
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k | 'Predicting the Hall-Petch effect
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e Implemented with GND initialization (Accounts for initial microstructure)
e Integral (Non-local formulation) of GND densities provides length scale
e Elastic behavior is independent of grain size

e 5-¢ curves stacked on top of each other

e Yield strength increases as grain size decreases
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Laboratories

e Predicts Hall-Petch behavior with dependence 1/d @ Sandia

[Hansen, Yield Flow and Fracture of Polycrystals, 1983]
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k | 'Predicting the Hall-Petch effect
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Non-local model produces continuum level results that resemble
experiments

...but what about the micro-scale??
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[Hansen, Yield Flow and Fracture of Polycrystals, 1983] Laboratories



,' ' «lcrostructural Plasticity Evolution

Experimental Numerical simulation
e Annealed Ni (99.9%) polycrystal e Initial microstructure meshed from
e Interrupted tensile tests EBSD map
0%, 1%, 5%, 10% strain e Local / Non-local models to 10%
e EBSD* data @ same location strain
- Zeiss Supra 55VP-FEG SEM e Periodic boundary conditions
- 20keV, 0.5um steps, 500x500 - columnar structure

- 3 areas on 3 tensile samples

Comparison

— Local microstructural distribution of misorientation (LIMIS)
— Overall average intra-grain misorientation (AMIS)

Sandia
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=~ ' Average misorientations
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— Average misorientations are predicted well by the non-local formulation

— Large experimental error bars due to the relatively small number of grains

samples (<100)
@ Sandia

—» AMIS values for local model lower than experimental value s P



e Local intra-grain misorientation
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Local formulation —» Underestimate local misorientation
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Local intra-grain misorientation

- il =

Non-Local formulation —» Misorientation too localized

1% Strain 5% Strain 10% Strain
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Summary and recommendations
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' 'What we learned...what’s next?

e Take away

- Polycrystal kinematics provide a consistent approach to initializing
grain boundary microstructure

- Non-local formulation predicts a grain size dependence of yield stress
- Grain morphology affects the Hall-Petch behavior
- Hardened grain boundaries causes misorientation accumulation

- Non-local model reproduces, with reasonable accuracy, macroscale
quantities (s-e curves, AMIS)

- Limited agreement locally: Local crystal plasticity model
underestimates local misorientation development, while the spatial distribution of
misorientation is too localized in the non-local formulation

e Future perspective
- Grain boundary behavior

- Flow rule (power law vs. thermally activated for example)
- Hardening law (phenomenological vs. micromechanics)
- Boundary conditions (homogeneous vs. experimental)

Sandia
- RVE (statistically representative vs. columnar structure) @ o



Thank you for your attention

o

+ Simulation .
504 = Experiment - Hanse
45 d=11um
40
35 d=93um
b

30 LT

L]

Local Model
254
20 T
0 50 100 150 200 250 300 350
Va (m)

@7 rdingre@sandia.gov
505-844-0209

@ Sandia
National
Laboratories


mailto:rdingre@sandia.gov

