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Influence of microstructure…

[Fleck, Acta Metall., 1994]
[Hansen, Yield Flow and Fracture of Polycrystals, 1983]

Microstructure scale does not affect 
hardening (very much)

Microstructure scale influences hardness

[Hall, Proc. Phys. Soc. London B, 1951 ; Petch, J. Iron and Steel Inst, 1953]



Influence of microstructure…

[Fleck, Acta Metall., 1994]
[Hansen, Yield Flow and Fracture of Polycrystals, 1983]

[McElhaney, JMR, 1998]

Microstructure scale does not affect 
hardening (very much)

[Hall, Proc. Phys. Soc. London B, 1951 ; Petch, J. Iron and Steel Inst, 1953]



Influence of microstructure…

[Fleck, Acta Metall., 1994]

Mechanical response of materials depends on the microstructure of the material

[Hansen, Yield Flow and Fracture of Polycrystals, 1983]

[McElhaney, JMR, 1998]

[Feaugas, Met. Trans, 2003 ]

[Hall, Proc. Phys. Soc. London B, 1951 ; Petch, J. Iron and Steel Inst, 1953]



…captured by crystal plasticity…
 Crystal plasticity = Grain-level (mesoscale) approach

to materials modeling using multiscale strategies

 Explicitly model discrete grains and slip systems 
(anisotropy, texture evolution,…)

→ Limitation: due to high # of ISVs (computational cost) 
difference in length scale: discrete vs. continuum

→ Advantage: predictive and robust theoretical framework 
to understand polycrystal behavior

Polycrystal Single crystal Finite
Element

Slip
Modes

Balance laws Constitutive Models



…with desired features

Experimental testing
(continuum mechanics)

FEM / Crystal Plasticity
(grain level structure)

Predicts sensitivity
to length scale

Predicts Hall-Petch effect (Relative) insensitivity of 
hardening to microstructure

 Focus on capturing the correct phenomenology
 Permit extension to existing constitutive foundation
 Permit implementation into existing finite element codes



Topic of discussion

 Influence of microstructure…

 …captured by featured crystal plasticity approach

 Crystal Plasticity:
- An augmented kinematic description
- Capturing length scale with non-local formulation

 Application:
- Predicting Hall-Petch effect in FCC metals

- Crystallographic reorientation and local comparison with EBSD

 Summary and future perspectives…



Crystal Plasticity

A little bit of theory…



Conventional formulation...

[Estrin and Mecking, Acta Met. 32 (1984) p.57]
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Conventional kinematics
describe the deformation,

starting from a reference polycrystal

t=0

Ý   Ý 0
 a

CRSS


sgn  a 

Kinematics

Elasticity  PK 2 Ce : ˜ E e

Hardening law
(Anisotropic Taylor hardening)

Slip evolution

(Power law viscoplastic flow rule)
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d
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Dislocation density evolution
(Static and dynamic recovery)
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[J.W. Hutchinson, (1970) “Elastic-plastic behaviour of polycrystalline metals and composites”, Proc. Roy. 
Soc. Lon.,   319 p.247]



… with an augmented kinematics
Accounting for initial microstructure

→ Based on a geometric argument
→ Introduce a fictitious deformation relative to a hypothetical single crystal
→ Establish crystal rotations necessary to produce grain boundaries (GBs)
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*Geometrically Necessary Dislocations



Initial microstructure

S.C. 

Nat. 

Ref.

Preliminary Kinematics

Fh

Fh
P Fh

e

t=0

Initial GNDs tensor G0

125m

20m

High GND

Low GND

Smaller grains generate a higher fraction of “hard” material nearby



Non-local formulation

Modeling length scale phenomena with non-local integral method

 Weighted average integral formulation for GND tensor

 Length scale enters as a material parameter
(defines weighting function)

G  x 
1

Vcell

 x, G  d
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Capturing a length scale effect

ξ1

ξ2

ξ3

GB
High GND

Low GND

+

Kinematics behind G0  Initialize microstructure

Non-local approach  Length scale

Impact hardening law 

Non-local integral methodPreliminary kinematics

a
SSD

a
GND

a
CSS bCG   110

dSSD


d
 c1 SSD

 GND
  c2 SSD

 GND
 

SSD evolution equation

GND
  JFe ĜTot : ŝ  m̂ 

b

Non-local formulation
of GND evolution

(Harder strength as one approaches the GB)



Application

[W.A. Counts (2006) “Predicting the Hall-Petch effect in FCC metals using non-local crystal plasticity”, PhD 
Dissertation, GIT]

Predicting the Hall-Petch effect
in FCC metals



Predicting the Hall-Petch effect
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• Implemented with GND initialization (Accounts for initial microstructure)

• Integral (Non-local formulation) of GND densities provides length scale

• Elastic behavior is independent of grain size

• - curves stacked on top of each other

• Yield strength increases as grain size decreases

• Predicts Hall-Petch behavior with dependence 1/d

[Hansen, Yield Flow and Fracture of Polycrystals, 1983]



Predicting the Hall-Petch effect
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Non-local model produces continuum level results that resemble 
experiments

…but what about the micro-scale??

[Hansen, Yield Flow and Fracture of Polycrystals, 1983]



Microstructural Plasticity Evolution

*Electron backscattered diffraction

Experimental
• Annealed Ni (99.9%) polycrystal
• Interrupted tensile tests

0%, 1%, 5%, 10% strain
• EBSD* data @ same location

- Zeiss Supra 55VP-FEG SEM

- 20keV, 0.5m steps, 500x500
- 3 areas on 3 tensile samples

Numerical simulation
• Initial microstructure meshed from 
EBSD map
• Local / Non-local models to 10% 
strain
• Periodic boundary conditions

: columnar structure

 Local microstructural distribution of misorientation (LIMIS)
 Overall average intra-grain misorientation (AMIS)

Comparison



Average misorientations
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 Average misorientations are predicted well by the non-local formulation

 Large experimental error bars due to the relatively small number of grains 
samples (<100)

 AMIS values for local model lower than experimental value



Local intra-grain misorientation

[units in degrees]

Local formulation  Underestimate local misorientation



Local intra-grain misorientation

[units in degrees]

Non-Local formulation  Misorientation too localized



Summary and recommendations

What we’ve learned…
What can be done…



What we learned…what’s next?

• Take away
- Polycrystal kinematics provide a consistent approach to initializing 

grain boundary microstructure

- Non-local formulation predicts a grain size dependence of yield stress

- Grain morphology affects the Hall-Petch behavior

- Hardened grain boundaries causes misorientation accumulation

- Non-local model reproduces, with reasonable accuracy, macroscale 
quantities (s-e curves, AMIS)

- Limited agreement locally:  Local crystal plasticity model 
underestimates local misorientation development, while the spatial distribution of 
misorientation is too localized in the non-local formulation

• Future perspective
- Grain boundary behavior

- Flow rule (power law vs. thermally activated for example)

- Hardening law (phenomenological vs. micromechanics)

- Boundary conditions (homogeneous vs. experimental)

- RVE (statistically representative vs. columnar structure)



Thank you for your attention

rdingre@sandia.gov

505-844-0209
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