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Background:

Aspects of Validation

(Oberkampf and Trucano, 2007)
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Review of Existing Approaches

• Comparison of mean value from simulation and experiment

– Only measures the mismatch between simulation  and

experiment at the expected value

• Hypothesis testing

– Measures the mismatch between probability distributions from

simulation and experiment

– Mismatch is measured by a probability value

• Bayesian validation

– Focused on evaluating a subjective probability that a simulation

is consistent with experiment

– Emphasis is on updating probability density functions of

uncertain parameters to obtain best agreement with experiment

– Assumes the model form is correct
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Need for a New Approach

• Our validation metric approach emphasizes:

– Objectively measuring mismatch between cumulative

distribution functions (CDFs) between simulation and

experiment

– Quantifying model form uncertainty, in the spirit of a “blind”

comparison with experiment

– Estimating the mismatch in terms of the units of the system

response quantity (SRQ) being compared

• Our approach can address:

– Comparison between simulation and experiment with as few as

one sample each

– Pooling of comparisons from dissimilar system response

quantities

– Epistemic uncertainty existing either (or both) the simulation

and the experimental measurements
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Area Validation Metric

• The validation metric is defined to be the area between the

cumulative distribution function (CDF) from the simulation

and the empirical distribution function (EDF) from experiment

(Minkowski L1 metric)
d(F,Sn ) = F(x) Sn (x) dx

Experimental

measurements

CDF from

simulation

Area d
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Area Validation Metric

(from Ferson et al 2008)
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How can Different Validation Metric

Results be Combined?

• Two common situations in comparison of simulation and
experiment:

– We have a time dependent SRQ and we have computed
individual validation metrics at several instances of time

– We have computed a validation metric for different SRQs

• Instead of using the probability integral transform theorem
(Angus, 1994) in the forward direction

• Given a distribution F and a uniform random variable u
between zero and one, the value of F-1(u) will be a random
variable distributed according to F.

• We can:

– Use it to back-transform from individual SRQs (physical space)
to a probability space.

– Then use an appropriate CDF, for the problem of interest, to
transform back into physical space so that a validation metric
can be computed.
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Pooling of Incomparable Comparisons

d



10

Aleatory and Epistemic Uncertainty

• Aleatory uncertainty is an inherent variation associated with
a parameter, physical system, or environment

– Also referred to as variability, stochastic uncertainty, irreducible
uncertainty

• Examples:

– Variability in geometric parameters due to manufacturing

– Variability in weather conditions

• Epistemic uncertainty arises from imperfect knowledge or
ignorance

– Also referred to as subjective uncertainty, reducible uncertainty,
or model form uncertainty

• Examples:

– Insufficient experimental data to precisely characterize a
probability distribution

– Poor understanding of physics phenomena or physics coupling

– Poor understanding of failure modes or hostile environments
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Measurement Uncertainty

• Traditional ISO/NIST approach is focused on the estimation of
random measurement uncertainty of a fixed quantity.

– X is the true, but unknown, value of the measurand

–   is the random measurement error

– Y is measured value

• Using either higher accuracy measurements or repeated
measurements of X,  is characterized as a parametric
probability distribution along with its parameters.

• Recent work by Ferson et al (2007) developed methods for
estimating epistemic uncertainty in measurements, e.g.,due to:

– Data censoring

– Missing values

– Sampling uncertainty

Y = X +
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Mapping of Epistemic Uncertainty

from an SRQ to a Probability
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Validation Metric for Aleatory and

Epistemic Uncertainty in the Simulation

• When epistemic uncertainty exist in the simulation, or in the
measurements, the validation metric can be zero

• This does not mean perfect agreement

• It means there is no evidence that the simulation and
experiment are in disagreement
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Generalizing the Validation Metric

for Aleatory and Epistemic Uncertainty

• The validation metric is now defined as

– where subscripts L and R denote the left and right bounds for

any epistemically uncertain CDFs

– and

• This metric is no longer a true mathematical metric because

the measure can attain zero without simulation and

experiment being identical

([FR (x),FL (x)],[SnR (x),SnL (x)]) dx

(A,B) = min
a A
b B

| a b |
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Validation Metric for Aleatory and Epistemic

Uncertainty in both the Simulation and Experiment
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Example of Increasing Epistemic

and Aleatory Uncertainty in the Simulation
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How is the Validation Metric Result d

Used in a Prediction?

• The model form
uncertainty is
represented as the
magnitude of the

validation metric d

•d is treated as an
epistemic uncertainty

•d is extrapolated in terms
of the system and
environmental
parameters to the
application of interest
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Concluding Remarks

• We believe it is essential to explicitly quantify the mismatch of our

models in comparisons with experimental data

• Epistemic uncertainty should be characterized using intervals, then

use either:

– Second order probability

– Dempster-Shafer theory

– Probability boxes

to propagate uncertainty from inputs to SRQs

• Improve methods are needed to extrapolate the validation metric, d,

to the application of interest

• We must continue to find ways of testing our predictive capability by

“blind” comparisons with experiments

Goal: Improved Risk-Informed Decision Making

For Engineering Systems


