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Background:
Aspects of Validation
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Review of Existing Approaches

e Comparison of mean value from simulation and experiment

— Only measures the mismatch between simulation and
experiment at the expected value

* Hypothesis testing

— Measures the mismatch between probability distributions from
simulation and experiment

— Mismatch is measured by a probability value

* Bayesian validation

— Focused on evaluating a subjective probability that a simulation
IS consistent with experiment

— Emphasis is on updating probability density functions of
uncertain parameters to obtain best agreement with experiment

— Assumes the model form is correct
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Need for a New Approach

* Qur validation metric approach emphasizes:

— Objectively measuring mismatch between cumulative
distribution functions (CDFs) between simulation and
experiment

— Quantifying model form uncertainty, in the spirit of a “blind”
comparison with experiment

— Estimating the mismatch in terms of the units of the system
response quantity (SRQ) being compared

* Qur approach can address:

— Comparison between simulation and experiment with as few as
one sample each

— Pooling of comparisons from dissimilar system response
guantities

— Epistemic uncertainty existing either (or both) the simulation
and the experimental measurements
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Area Validation Metric

* The validation metric is defined to be the area between the
cumulative distribution function (CDF) from the simulation
and the empirical distribution function (EDF) from experiment

(Minkowski L, metric) F
d(F,S )= j [F(x)—S, (x)|dx
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Area Validation Metric
(from Ferson et al 2008)
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>~ ..’ How can Different Validation Metric
' Results be Combined?

* Two common situations in comparison of simulation and
experiment:

— We have a time dependent SRQ and we have computed
individual validation metrics at several instances of time

— We have computed a validation metric for different SRQs

* Instead of using the probability integral transform theorem
(Angus, 1994) in the forward direction

* Given a distribution F and a uniform random variable u
between zero and one, the value of F1(u) will be a random
variable distributed according to F.

* \We can:

— Use it to back-transform from individual SRQs (physical space)
to a probability space.

— Then use an appropriate CDF, for the problem of interest, to
transform back into physical space so that a validation metric
can be computed.
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Pooling of Incomparable Comparisons
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Aleatory and Epistemic Uncertainty

* Aleatory uncertainty is an inherent variation associated with
a parameter, physical system, or environment

— Also referred to as variability, stochastic uncertainty, irreducible
uncertainty

* Examples:
— Variability in geometric parameters due to manufacturing
— Variability in weather conditions

* Epistemic uncertainty arises from imperfect knowledge or
ignorance

— Also referred to as subjective uncertainty, reducible uncertainty,
or model form uncertainty

* Examples:

— Insufficient experimental data to precisely characterize a
probability distribution

— Poor understanding of physics phenomena or physics coupling
— Poor understanding of failure modes or hostile environments
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Measurement Uncertainty

* Traditional ISO/NIST approach is focused on the estimation of
random measurement uncertainty of a fixed quantity.

Y=X+¢
— X s the true, but unknown, value of the measurand
— £ 1s the random measurement error
— Y is measured value

* Using either higher accuracy measurements or repeated
measurements of X, € is characterized as a parametric
probability distribution along with its parameters.

* Recent work by Ferson et al (2007) developed methods for
estimating epistemic uncertainty in measurements, e.g.,due to:

— Data censoring
— Missing values
— Sampling uncertainty
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Mapping of Epistemic Uncertainty
from an SRQ to a Probability

2
=
O e
o
A .
0 i :
200 300 400
Temperature
1_
2 |
i}é
<
= ——
<R S
S
¥ :
0 - ; .
200 300 400
Temperature

2
=T
e
O ........................
& -
O . . . .
200 300 400
Temperature
1 -
2 |
:Eg
= S PO
O
o
s
W .
0 i .
200 300 400
Temperature

12

Sandia
National
Laboratories



' i Validation Metric for Aleatory and
Epistemic Uncertainty in the Simulation
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* \When epistemic uncertainty exist in the simulation, or in the
measurements, the validation metric can be zero

* This does not mean perfect agreement

* [t means there is no evidence that the simulation and
experiment are in disagreement
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- ,J’ Generallzmg the Validation Metric
’ for Aleatory and Epistemic Uncertainty

* The validation metric is now defined as
[ AU (). F (LIS, (1.8, (0)]) dix

— where subscripts L and R denote the left and right bounds for
any epistemically uncertain CDFs

— and A(A,B)=minla—-b|

acA
beB

* This metric is no longer atrue mathematical metric because
the measure can attain zero without simulation and
experiment being identical
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} Validation Metric for Aleatory and Epistemic

Uncertainty in both the Simulation and Experiment
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V '
} Example of Increasing Epistemic

and Aleatory Uncertainty in the Simulation
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Used in a Prediction?
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Concluding Remarks

* We believe it is essential to explicitly quantify the mismatch of our
models in comparisons with experimental data

* Epistemic uncertainty should be characterized using intervals, then
use either:

— Second order probability
— Dempster-Shafer theory
— Probability boxes

to propagate uncertainty from inputs to SRQs

* Improve methods are needed to extrapolate the validation metric, d,
to the application of interest

* We must continue to find ways of testing our predictive capability by
“blind” comparisons with experiments

Goal: Improved Risk-Informed Decision Making

For Engineering Systems
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