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Outline

- Rationale
Examples of failures from cylindrical inclusions

- Impact on SCG ?

- Fracture Mechanics Analysis
-Describe behavior of radial cracks

- Effect on Strength Variability

- Considerations for Design of Material Systems



Crack at Pin in a Glass-to-Metal Seal

500 m

- Electrical breakdown issue

Kovar Pin

Kovar Shell

Radial Crack
Kovar~glass



Radial Cracks

6 mm

Cracks in Multi-Pin Glass-to-Metal Seal

- Hermeticity and electrical breakdown issues

Alloy 52 Pin

Kovar Shell

Shell SS 304

glass<<shell



Radial Cracks Within and Outside fiber

Radial Crack

Optical Fiber

Glass Matrix

- Loss of power-transmission functionality

fiber<<glass



Radial Crack at Via in Packaging Material

100 m

Mo-alumina 
via

Radial Crack

Alumina

- Strength testing reveals radial cracking at
via to be failure mechanism

Mo-alumina<alumina



Stress Fields Around Vias Influence 
Fracture Behavior

B. Failure envelopes degrade with time due 
to SCG . How does this stress field impact 
lifetime predictions of components ?
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A. Effect on strength variability of components ?

Lower limit of failure envelope:

Without via

With via Without via, with SCG



Fracture Mechanics Description
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Point force solution acting on crack

Stress due to inclusion acting on crack
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If K-a > K1c, –a tip jumps to inclusion; arrests
Jump likely on external stress application
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Results for Materials Systems of Interest

KRes has a maximum
KRes increases with radius

R=250 m

R=100 m

R=50 m
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Net K= Matrix Toughness- KRes. due to inclusion

RESULTS FOR TWO VIA MATERIALS 
Via A: Mo-alumina 

Via B: Pure Mo (higher expansion mismatch)

Destabilizing-Stabilizing Fields

For largest via, Via B, cracks a12<a<a13 grow spontaneously to a13

Via A

Via B

Matrix Toughness
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Behavior of crack at R=250 m, Via B under 
Applied Tension

a21

a22 a23

a24

Via B
R=50 m

R=250 m

a23<a<a24: Stable crack growth, failure at a24

a21<a: Unstable fracture; failure at a

Applied Loading
Line Tangent to
Net K curve

a>a24: Unstable fracture; failure at a
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a11<a<a12: Stable crack growth, failure at a12

a11<a: Unstable fracture; failure at a

a>a12: Unstable fracture; failure at a

Behavior of crack at R=100 m, Via B under 
Applied Tension
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Line Tangent to
Net K curve



Effect on Strength Variability
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Generated crack size distributions centered at various a/R 
locations such that the Weibull moduli=20 for each distribution
on the base material
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Results for Via B, R=100 m

All cracks in this set: 
Destabilizing Field; no stability

R=100 m

R=50 m

Smaller Cracks in this set: Destabilizing Field
Larger Cracks: Stable growth; failure at a12

a12

All Cracks in this set: Stabilizing Field

Strength Variability: R=100 m
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Strength Variability: R=50 m

Results for Via B, R=50 m

All cracks in this set: 
Destabilizing Field 

R=100 m

R=50 m

Smaller Cracks: Destabilizing Field
Larger Cracks: Stabilizing Field

All Cracks in this set: Stabilizing Field

m0=20 m0=20       m0=20 



Conclusions

Choose smallest inclusion size possible 
-Retain most of the strength 
-Possibly reduce variability

For High Retained Strength +Reduced Variability

If crack size is ~ microstructure feature size (g),
then choosing R < 4a~4g ensures that most cracks

lie on the stabilizing branch.   

Fracture Mechanics Vs. Strength of Materials


