SAND2008-1743C

Analytic Sensitivities in Large-scale
Production Applications via Automatic
Differentiation with Sacado

Eric Phipps
Roscoe Bartlett, David Gay
Optimization & Uncertainty Quantification Department
Sandia National Laboratories
Albuquerque, NM USA

Parallel Processing for Scientific Computing
March 13, 2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Sandia
for the United States Department of Energy’s National Nuclear Security Administration National
under contract DE-AC04-94AL85000. Laboratories

=& Analytic Derivatives Enable Robust
Simulation and Design Capabilities

* We need analytic first & higher derivatives for predictive simulations
— Computational design, optimization and parameter estimation
— Stability analysis
— Uncertainty quantification
— Verification and validation

 Analytic derivatives improve robustness and efficiency
—Very hard to make finite differences accurate

* Infeasible to expect application developers to code analytic
derivatives

— Time consuming, error prone, and difficult to verify
— Thousands of possible parameters in a large code
— Developers must understand what derivatives are needed

» Automatic differentiation solves these problems -
Natona
Laboratories

What is Automatic Differentiation (AD)?

 Technique to compute analytic derivatives
without hand-coding the derivative

_ 3 X _
computation y =sin(e” + zlogz), x =2

 How does it work -- freshman calculus

— Computations are composition of
simple operations (+, *, sin(), etc...)
with known derivatives

— Derivatives computed line-by-line,
combined via chain rule

u <« logx

* Derivatives accurate as original
computation

— No finite-difference truncation errors v

w—t+v

Y «— sinw

Sandia Physics Simulation Codes

Element-based Fluids Combustion

— Finite element, finite volume, finite
difference, network, etc...

Large-scale
— Billions of unknowns

Parallel
— MPI-based SPMD

— Distributed memory

C++
— Object oriented

— Some coupling to legacy Fortran
libraries

Plasmas

We need AD techniques that fit these
requirements

@ National
Laboratories

Automatic Differentiation Projects

« Many AD projects around the world, e.g.,
— ADIFOR/ADIC (ANL, Rice) -- Fortran 77, simple C
— OpenAD (ANL, Rice, Aachen) -- Fortran 77/95, C/C++
— ADOL-C (TU-Desden) -- C/C++
— TFAD<> -- C/C++

* Most source transformation tools limited to Fortran

» Most operator overloading based tools are slow
— TFAD<> shows how to do this efficiently

« Many AD projects are geared towards “black-box” solutions

» We need efficient OO tools optimized for Sandia’s large-scale, parallel,
C++ applications

Sandia
National
Laboratories

Sacado: AD Tools for C++ Codes

Trilinos package: www.trilinos.sandia.gov &

-
Sacado provides several modes of Automatic Differentiation (AD) %

— Forward (Jacobians, Jacobian-vector products, ...)
— Reverse (Gradients, Jacobian-transpose-vector products, ...)
— Taylor (High-order univariate Taylor series)

Sacado implements AD via operator overloading and C++ templating
— Expression templates for OO efficiency
— Application code templating for easy incorporation

Designed for use in large-scale C++ codes
— Apply AD at “element-level”
— Very successful in Charon application code
— Sacado: : FEApp example demonstrates approach

Sacado provides other useful utilities
— Scalar flop counting
— Scalar parameter library :
Sandia

— Template utilities National
Laboratories

http://www.trilinos.sandia.gov
http://www.trilinos.sandia.gov

Simple Sacado Example

// The function to differentiate

double func(double a, double b, double c) {
double r = c*std::log(b+1.)/std::sin(a);

return r;

3

int main(int argc, char **argv) {
double a = std::atan(1.0);
double b = 2.0;
double c = 3.0;

// Compute function
double r = func(a, b,

Simple Sacado Example

#include "Sacado.hpp"

// The function to differentiate

template <typename ScalarT>

ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {
ScalarT r = c*std::log(b+1.)/std::sin(a);

return r;

}

int main(int argc, char **argv) {
double a = std::atan(1.0);
double b = 2.0;
double c = 3.0;

// Fad objects

int num_deriv = 2; // Number of independent variables
Sacado: :Fad: :DFad<double> afad(num_deriv, @, a); // First (@) indep. var
Sacado: :Fad: :DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var
Sacado: :Fad: :DFad<double> cfad(c); // Passive variable

// Compute function
double r = func(a, b, ©);

// Compute function and derivative with AD
Sacado: :Fad: :DFad<double> rfad = func(afad, bfad, cfad);

// Extract value and derivatives
double r_ad = rfad.val(Q); //r
double drda_ad = rfad.dx(@); // dr/da
double drdb_ad = rfad.dx(1); // dr/db

~,
-~
Differentiating Element-Based Codes

 Global residual computation (ignoring boundary computations):

f(it,ilf,t,p) = ZQ@TGk‘Z (P@.I',Pzilﬁ,t,p)
=1

» Time-step Jacobian computation:

8% 8% '
‘ (a 8:6% +5 8332) P“

« Parameter derivative computation:

8ek
QT
9

» Hybrid symbolic/AD procedure
— Element-level derivatives computed via AD
— Exactly the same as how you would do this “manually”

— Avoids parallelization issues S
National
Laboratories

Difficulties

» Template code introduces excessive compiler overhead
— Explicit template instantiation
— Preprocessor macros make this easy

» Real codes always call other libraries
—BLAS/LAPACK
— CHEMKIN
—Linear/nonlinear solvers

Scalability of AD in Charon

Scalability of the element-level derivative computation

Set of N hypothetical chemical species: Jacobian Eval Adjoint Eval

()
2XjﬁXj_1—|—Xj_|_1, j:2,...,N—1 = —=FD
—-—FAD

1.02
u-VY; +V?Y; =w;, j=1,....,N—1|. 0.27

—
o

Steady-state mass transfer equations:

. ——RAD
0O 100 200 300 400

Relative Eval. Time

N
0
Zy, —1 0 100 200 300 400
- J DOF Per Element DOF Per Element
J:

Jacobian Eval Adjoint Eval

Forward mode AD
v Faster than FD
v Better scalability in number of PDEs
v Analytic Derivative
Reverse mode AD
v Scalable adjoint/gradient
JTw = V(w’ f(z))

—_
o
o
o

~=FD
—e—FAD

1.55

——RAD

0.94

0O 100 200 300 400 5'60 100 200 300 400

DOF Per Element DOF Per Element

Relative Flop Count
Relative Flop Count

DOF per element = 4*N ==\ Sandia

QASPR
QASPR e s ASEYE 5

Qualification of electronic devices in hostile environments

Electric Potential

4.724e-01 -2.131e-01 4.61-02 3.0-01 5.646e-01

Defect reactions

B, (+,0,- /
1 (507) No irradiation: Ig =-0.05 yA
Si interstitial (1) (+2,+1,0,-1,-2)

CI (+,0,-)

Experiment
Annihilation

v

Base current (pA)

f VV (+1,0,-1,-2)
Annihilation

Defect annealing
v

VB (+,0)
Vacancy (V) (+2,+1,0,-1,-2)

VP (0,-)

ﬁa?_dia I
_ ationa
VO (0.-) Laboratories

~

" Charon Drift-Diffusion Formulation
with Defects

on
Current E_V'Jn _Rn(¢7n7p7yl7”'7YN)7 S =
Conservation for o
e- and h+ p

E+VJP :_Rp(wanwpayla-“aYN)? J, :—p,upvw—Dpr
Defect 0Y;

Continuity W +V-Jy, =

—np, Vi) + D, Vn

—Ryz(w,n,p,Yl,,YN), JYL :_MzYzVQ#—DzVYz

Electric

potential —V(eVi(z)) = —q (p(z) — n(z) + Np(z) — Ny (z)) — Z(JzYL(iU)

Recombination/

eneration Rx Include electron capture and hole capture by defect species
sgurce terms and reactions between various defect species

Electron
emission/capture

Zi - Zi-i-l +e~

R[Z¢_>Zi+1+e—] 0.8 O'[Zi_>Zz'+1+e—]Zi €xXp (

Cross section

Sandia
National
Laboratories

* Discretized PDE system: Transient ODE/DAE

forward sensitivity solvers

Rythmos

A

| ImplicitBDFStepper | | ExplicitRKStepper

f(@,z,p,t) =0
g(p,t) = g(@(t), z(t),p, 1)

« Forward sensitivity problem

of (0x of (Ox af
%(a—p)%(a—p)%—p—”

dg 0g 0z " 0g Ox g dg
3]) - 3:(3 3p (9:13 (9p 8p Algebraic

preconditioners and
direct solvers

| Amesos |

LHIme Integrator pdCrd(

Linear algebra data
structures

9x0.1 micron pseudo-1D simulation
1046x1 quad cells

Linear finite elements + SUPG

2 carriers + 35 defect species
108,030 unknowns on 32 processors
84 carrier-defect reactions

126 parameters for sensitivity analysis
Base current provides observation function

Radiation Pulse

(o]

(0]

A~

Frenkel Pairs
Base Current

N

o
\ T

Sandia
National
Laboratories

Transient Base Current Sensitivities

Scaled Sensitivities

time = 1.0e-03

e o 9o
[-)

Scaled Sensitivity
S
N ©

|
o
=)

10 20 30 40 50 60 70 80 90 100 110 120

time=1.0

oo 9o
[
:

.

Scaled Sensitivity
o

1
o
)

10 20 30 40 50 60 70 80 90 100 110 120
Parameter

Reaction Parameter

Value

Scaled Sensitivities

T

o
(2]

Scaled Sensitivity
o

|
o
wn

—

— Parameter 16
— Parameter 46

-8

x 10°

6 10-4
Time (s)

10

Unscaled Sensitivities

14 V—~ —e +V~ gctivation energy

0.09

16 e +V V- cross-section 2.40E-14

46 ¢ +PV° — pyo cross-section

1.50E-15

Sensitivity

[|— Parameter 16
— Parameter 46

N 107
Time (s)

10

Comparison to Black-Box Finite Differences

* Run-times:
— Forward simulation: 105 min.
— Direct sensitivities: 931 min.

— Black-box, first-order FD: ~13,000 min.

» Direct approach more efficient
—14x speed-up
« Direct approach more accurate

1st-order Finite Difference Error

0.5

©
~

Relative Error
o
N

——1e-1
——1e-2
——1e-3]
——1e-4
——1e-5

o
. w

Summary

« Simple AD approach
—Apply AD at element-level
—Simple, fast, Sacado AD tools
— Templating

* AD + Rythmos provides remarkable improvements over black-box FD for
transient sensitivities

— Efficiency, accuracy, robustness

» Transformational enabling technology
—Allows app developers to focus on physics, not derivatives
—Enables advanced embedded analysis provided by Trilinos
—Application templating provides algorithmic hooks

Sandia
National
Laboratories

