
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Eric Phipps
Roscoe Bartlett, David Gay

Optimization & Uncertainty Quantification Department
Sandia National Laboratories

Albuquerque, NM USA

Parallel Processing for Scientific Computing
March 13, 2008

Analytic Sensitivities in Large-scale
Production Applications via Automatic

Differentiation with Sacado

SAND2008-1743C

Analytic Derivatives Enable Robust
Simulation and Design Capabilities

• We need analytic first & higher derivatives for predictive simulations
– Computational design, optimization and parameter estimation
– Stability analysis
– Uncertainty quantification
– Verification and validation

• Analytic derivatives improve robustness and efficiency
– Very hard to make finite differences accurate

• Infeasible to expect application developers to code analytic
derivatives

– Time consuming, error prone, and difficult to verify
– Thousands of possible parameters in a large code
– Developers must understand what derivatives are needed

• Automatic differentiation solves these problems

2.000 1.000

7.389 7.389

0.301 0.500

0.602 1.301

7.991 8.690

0.991 -1.188

What is Automatic Differentiation (AD)?

• Technique to compute analytic derivatives
without hand-coding the derivative
computation

• How does it work -- freshman calculus
– Computations are composition of

simple operations (+, *, sin(), etc…)
with known derivatives

– Derivatives computed line-by-line,
combined via chain rule

• Derivatives accurate as original
computation

– No finite-difference truncation errors

• Provides analytic derivatives without the
time and effort of hand-coding them

d

dx
x

x← 2
dx

dx
← 1

t← ex dt

dx
← t

dx

dx

u← log x
du

dx
← 1

x

dx

dx

v ← xu
dv

dx
← u

dx

dx
+ x

du

dx

w ← t + v
dw

dx
← dt

dx
+

dv

dx

y ← sinw
dy

dx
← cos(w)

dw

dx

y = sin(ex + x log x), x = 2

Sandia Physics Simulation Codes
• Element-based

– Finite element, finite volume, finite
difference, network, etc…

• Large-scale
– Billions of unknowns

• Parallel
– MPI-based SPMD
– Distributed memory

• C++
– Object oriented
– Some coupling to legacy Fortran

libraries

• We need AD techniques that fit these
requirements

Fluids Combustion

Structures
Circuits

Plasmas

MEMS

Automatic Differentiation Projects

• Many AD projects around the world, e.g.,
– ADIFOR/ADIC (ANL, Rice) -- Fortran 77, simple C
– OpenAD (ANL, Rice, Aachen) -- Fortran 77/95, C/C++
– ADOL-C (TU-Desden) -- C/C++
– TFAD<> -- C/C++

• Most source transformation tools limited to Fortran

• Most operator overloading based tools are slow
– TFAD<> shows how to do this efficiently

• Many AD projects are geared towards “black-box” solutions

• We need efficient OO tools optimized for Sandia’s large-scale, parallel,
C++ applications

Sacado: AD Tools for C++ Codes

• Trilinos package: www.trilinos.sandia.gov

• Sacado provides several modes of Automatic Differentiation (AD)
– Forward (Jacobians, Jacobian-vector products, …)
– Reverse (Gradients, Jacobian-transpose-vector products, …)
– Taylor (High-order univariate Taylor series)

• Sacado implements AD via operator overloading and C++ templating
– Expression templates for OO efficiency
– Application code templating for easy incorporation

• Designed for use in large-scale C++ codes
– Apply AD at “element-level”
– Very successful in Charon application code
– Sacado::FEApp example demonstrates approach

• Sacado provides other useful utilities
– Scalar flop counting
– Scalar parameter library
– Template utilities

http://www.trilinos.sandia.gov
http://www.trilinos.sandia.gov

// The function to differentiate

double func(double a, double b, double c) {
 double r = c*std::log(b+1.)/std::sin(a);

 return r;
}

int main(int argc, char **argv) {
 double a = std::atan(1.0); // pi/4
 double b = 2.0;
 double c = 3.0;

 // Compute function
 double r = func(a, b, c);

Simple Sacado Example

#include "Sacado.hpp"

// The function to differentiate
template <typename ScalarT>
ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {
 ScalarT r = c*std::log(b+1.)/std::sin(a);

 return r;
}

int main(int argc, char **argv) {
 double a = std::atan(1.0); // pi/4
 double b = 2.0;
 double c = 3.0;

 // Fad objects
 int num_deriv = 2; // Number of independent variables
 Sacado::Fad::DFad<double> afad(num_deriv, 0, a); // First (0) indep. var
 Sacado::Fad::DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var
 Sacado::Fad::DFad<double> cfad(c); // Passive variable

 // Compute function
 double r = func(a, b, c);

 // Compute function and derivative with AD
 Sacado::Fad::DFad<double> rfad = func(afad, bfad, cfad);

 // Extract value and derivatives
 double r_ad = rfad.val(); // r
 double drda_ad = rfad.dx(0); // dr/da
 double drdb_ad = rfad.dx(1); // dr/db

Simple Sacado Example

• Global residual computation (ignoring boundary computations):

• Time-step Jacobian computation:

• Parameter derivative computation:

• Hybrid symbolic/AD procedure
– Element-level derivatives computed via AD
– Exactly the same as how you would do this “manually”
– Avoids parallelization issues

Differentiating Element-Based Codes

f(ẋ, x, t, p) =
N∑

i=1

QT
i eki(Piẋ, Pix, t, p)

α
∂f

∂ẋ
+ β

∂f

∂x
=

N∑

i=1

QT
i

(
α

∂eki

∂ẋi
+ β

∂eki

∂xi

)
Pi, ẋi = Piẋ, xi = Pix

∂f

∂p
=

N∑

i=1

QT
i

∂eki

∂p

Difficulties

• Template code introduces excessive compiler overhead
– Explicit template instantiation
– Preprocessor macros make this easy

• Real codes always call other libraries
– BLAS/LAPACK
– CHEMKIN
– Linear/nonlinear solvers
– Template interfaces (partial template specialization) are general solution

• Operator overloading overhead
– Residual/derivative fills are not dominant cost

2Xj ! Xj−1 + Xj+1, j = 2, . . . , N − 1

u ·∇Yj +∇2Yj = ω̇j , j = 1, . . . , N − 1
N∑

j=1

Yj = 1

Steady-state mass transfer equations:

Scalability of AD in Charon

Scalability of the element-level derivative computation
Set of N hypothetical chemical species:

DOF per element = 4*N

0 100 200 300 400
0

200

400

600

DOF Per Element

R
e

la
ti
v
e

 E
v
a

l.
 T

im
e Jacobian Eval

1.02

0.27

0 100 200 300 400
0

500

1000

DOF Per Element

R
e

la
ti
v
e

 F
lo

p
 C

o
u

n
t Jacobian Eval

0.94

1.55

0 100 200 300 400
7

8

9

10

DOF Per Element

R
e

la
ti
v
e

 E
v
a

l.
 T

im
e Adjoint Eval

0 100 200 300 400
5.6

5.7

5.8

5.9

DOF Per Element

R
e

la
ti
v
e

 F
lo

p
 C

o
u

n
t Adjoint Eval

FD

FAD

FD

FAD

RAD

RAD
Forward mode AD
✓Faster than FD
✓Better scalability in number of PDEs
✓Analytic Derivative

Reverse mode AD
✓Scalable adjoint/gradient

JT w = ∇(wT f(x))

Si interstitial (I) (+2,+1,0,–1,–2)

Vacancy (V) (+2,+1,0,–1,–2)

VV (+1,0,–1,–2)

BI (+,0,–)

CI (+,0,-)

VP (0,–)

VB (+,0)

VO (0,–)

BIB (0,–)

BIO (+,0)

BIC

Annihilation

Annihilation

Defect reactions

QASPR
Qualification of electronic devices in hostile environments

PDE semiconductor
device simulation

Stockpile BJT

Charon Drift-Diffusion Formulation
with Defects

Defect
Continuity

Include electron capture and hole capture by defect species
and reactions between various defect species

Electric
potential

Electron
emission/capture

Current
Conservation for

e- and h+

Cross section

Activation Energy

∂n

∂t
−∇ · Jn = −Rn(ψ, n, p, Y1, . . . , YN), Jn = −nµn∇ψ + Dn∇n

∂p

∂t
+∇ · Jp = −Rp(ψ, n, p, Y1, . . . , YN), Jp = −pµp∇ψ −Dp∇p

∂Yi

∂t
+∇ · JYi = −RYi(ψ, n, p, Y1, . . . , YN), JYi = −µiYi∇ψ −Di∇Yi

−∇(ε∇ψ(x)) = −q
(
p(x)− n(x) + N+

D (x)−N−
A (x)

)
−

N∑

i=1

qiYi(x)

Recombination/
generation

source terms
RX

Zi ↔ Zi+1 + e−
R[Zi→Zi+1+e−] ∝ σ[Zi→Zi+1+e−]Z

i exp
(

∆E[Zi→Zi+1+e−]

kT

)

Forward Sensitivity Analysis with Rythmos
• Discretized PDE system:

• Forward sensitivity problem

• Rythmos time integration package
– Todd Coffey, Ross Bartlett (SNL)
– Implicit BDF time integration method
– Variable order, step size
– Staggered corrector forward sensitivity

method

f(ẋ, x, p, t) = 0
ĝ(p, t) = g(ẋ(t), x(t), p, t)

∂f

∂ẋ

(
∂ẋ

∂p

)
+

∂f

∂x

(
∂x

∂p

)
+

∂f

∂p
= 0

∂ĝ

∂p
=

∂g

∂ẋ

∂ẋ

∂p
+

∂g

∂x

∂x

∂p
+

∂g

∂p

ImplicitBDFStepper ExplicitRKStepper …

NonlinearSolver

NOX TimeStepSolver

LinearSolver

Amesos

AztecOO Belos

Preconditioner

Ifpack ML

…

…

Epetra

Linear algebra data
structures

Algebraic
preconditioners and
direct solvers

Iterative linear solvers

Iterative nonlinear
solvers

…

Rythmos
Transient ODE/DAE
forward sensitivity solvers

Derivatives Sacado

Sensitivity Analysis of a Pseudo-1D BJT
• 9x0.1 micron pseudo-1D simulation
• 1046x1 quad cells
• Linear finite elements + SUPG
• 2 carriers + 35 defect species
• 108,030 unknowns on 32 processors
• 84 carrier-defect reactions
• 126 parameters for sensitivity analysis
• Base current provides observation function

Transient Base Current

!"
!#

!"
!$

!"
!%

!"
!&

!"
"

"

&

%

$

#

'(!"
!)

*+,-(./0

1
2
/
-
(3
4
55
-
6
7

!"
!#

!"
!$

!"
!%

!"
!&

!"
"

"

!

&

'

%

(
)*!"

!+

,-./*012

3
4/
5
6
/
7*
8
9
-4
1

Radiation Pulse

Transient Base Current Sensitivities

p

I

dI

dp

Reaction Parameter Value

14 activation energy 0.09

16 cross-section 2.40E-14

46 cross-section 1.50E-15

V −− → e− + V −

e− + V 0 → V −

e− + PV 0 → PV 0

!" #" $" %" &" '" (")" *" !"" !!" !#"
!"+'

!"+%

!"+#

"

"+#

"+%

"+'

,
-
.
/0
1
2,
0
3
4
56
57
56
8

65902:2!+"0!"$

!" #" $" %" &" '" (")" *" !"" !!" !#"
!"+'

!"+%

!"+#

"

"+#

"+%

"+'

;.<.9060<

,
-
.
/0
1
2,
0
3
4
56
57
56
8

65902:2!+"

Scaled Sensitivities

!"
!#

!"
!$

!"
!%

!"
!&

!"
"

!!

!"'(

"

"'(

!

)*+,-./0

1
2
3
4,
5
-1
,
6
/
*7
*8
*7
9

-

-

:3;3+,7,;-!$

:3;3+,7,;-%$

Scaled Sensitivities

!"
!#

!"
!$

!"
!%

!"
!&

!"
"

!'

!%

!(

!&

!!

"
)*!"

%

+,-.*/01

2
.
3
0
,4
,5
,4
6

*

*

7898-.4.9*!$

7898-.4.9*%$

Unscaled Sensitivities

Comparison to Black-Box Finite Differences

• Run-times:
– Forward simulation: 105 min.
– Direct sensitivities: 931 min.
– Black-box, first-order FD: ~13,000 min.

• Direct approach more efficient
– 14x speed-up

• Direct approach more accurate
– 1-2 correct digits w/FD
– FD requires tighter tolerances to

achieve higher accuracy
• Direct approach more robust

– Accuracy solely dictated by time-
integration error

1st-order Finite Difference Error

!"
!#

!"
!$

!"
!%

!"
!!

!"
"

"

"&!

"&%

"&$

"&#

"&'

()*+,-./

0
+
12
3)
4
+
,5
66
7
6

,

,

!+!!

!+!%

!+!$

!+!#

!+!'

Summary

• Simple AD approach
–Apply AD at element-level
–Simple, fast, Sacado AD tools
–Templating

• AD + Rythmos provides remarkable improvements over black-box FD for
transient sensitivities

–Efficiency, accuracy, robustness

• Transformational enabling technology
–Allows app developers to focus on physics, not derivatives
–Enables advanced embedded analysis provided by Trilinos
–Application templating provides algorithmic hooks

