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Analytic Derivatives Enable Robust 
Simulation and Design Capabilities

• We need analytic first & higher derivatives for predictive simulations
– Computational design, optimization and parameter estimation
– Stability analysis
– Uncertainty quantification
– Verification and validation

• Analytic derivatives improve robustness and efficiency
– Very hard to make finite differences accurate

• Infeasible to expect application developers to code analytic 
derivatives

– Time consuming, error prone, and difficult to verify
– Thousands of possible parameters in a large code
– Developers must understand what derivatives are needed

• Automatic differentiation solves these problems
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What is Automatic Differentiation (AD)?

• Technique to compute analytic derivatives 
without hand-coding the derivative 
computation

• How does it work -- freshman calculus
– Computations are composition of 

simple operations (+, *, sin(), etc…) 
with known derivatives

– Derivatives computed line-by-line, 
combined via chain rule

• Derivatives accurate as original 
computation 

– No finite-difference truncation errors

• Provides analytic derivatives without the 
time and effort of hand-coding them
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Sandia Physics Simulation Codes
• Element-based

– Finite element, finite volume, finite 
difference, network, etc…

• Large-scale
– Billions of unknowns

• Parallel
– MPI-based SPMD
– Distributed memory

• C++
– Object oriented
– Some coupling to legacy Fortran 

libraries

• We need AD techniques that fit these 
requirements

Fluids Combustion

Structures
Circuits

Plasmas

MEMS



Automatic Differentiation Projects

• Many AD projects around the world, e.g., 
– ADIFOR/ADIC (ANL, Rice) -- Fortran 77, simple C
– OpenAD (ANL, Rice, Aachen) -- Fortran 77/95, C/C++
– ADOL-C (TU-Desden) -- C/C++ 
– TFAD<> -- C/C++ 

• Most source transformation tools limited to Fortran

• Most operator overloading based tools are slow
– TFAD<> shows how to do this efficiently

• Many AD projects are geared towards “black-box” solutions

• We need efficient OO tools optimized for Sandia’s large-scale, parallel, 
C++ applications



Sacado:  AD Tools for C++ Codes

• Trilinos package:  www.trilinos.sandia.gov

• Sacado provides several modes of Automatic Differentiation (AD)
– Forward (Jacobians, Jacobian-vector products, …)
– Reverse (Gradients, Jacobian-transpose-vector products, …)
– Taylor (High-order univariate Taylor series)

• Sacado implements AD via operator overloading and C++ templating
– Expression templates for OO efficiency
– Application code templating for easy incorporation

• Designed for use in large-scale C++ codes
– Apply AD at “element-level”
– Very successful in Charon application code
– Sacado::FEApp example demonstrates approach

• Sacado provides other useful utilities
– Scalar flop counting
– Scalar parameter library
– Template utilities

http://www.trilinos.sandia.gov
http://www.trilinos.sandia.gov


// The function to differentiate

double func(double a, double b, double c) {
  double r = c*std::log(b+1.)/std::sin(a);

  return r;
}

int main(int argc, char **argv) {
  double a = std::atan(1.0);                       // pi/4
  double b = 2.0;
  double c = 3.0;

  // Compute function
  double r = func(a, b, c);
  

Simple Sacado Example



#include "Sacado.hpp"

// The function to differentiate
template <typename ScalarT>
ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {
  ScalarT r = c*std::log(b+1.)/std::sin(a);

  return r;
}

int main(int argc, char **argv) {
  double a = std::atan(1.0);                       // pi/4
  double b = 2.0;
  double c = 3.0;

  // Fad objects
  int num_deriv = 2;                               // Number of independent variables
  Sacado::Fad::DFad<double> afad(num_deriv, 0, a); // First (0) indep. var
  Sacado::Fad::DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var
  Sacado::Fad::DFad<double> cfad(c);               // Passive variable
  
  // Compute function
  double r = func(a, b, c);

  // Compute function and derivative with AD
  Sacado::Fad::DFad<double> rfad = func(afad, bfad, cfad);

  // Extract value and derivatives
  double r_ad = rfad.val();     // r
  double drda_ad = rfad.dx(0);  // dr/da
  double drdb_ad = rfad.dx(1);  // dr/db

Simple Sacado Example



• Global residual computation (ignoring boundary computations):

• Time-step Jacobian computation:

• Parameter derivative computation:

• Hybrid symbolic/AD procedure
– Element-level derivatives computed via AD
– Exactly the same as how you would do this “manually”
– Avoids parallelization issues

Differentiating Element-Based Codes
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∂ẋi
+ β

∂eki

∂xi

)
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Difficulties

• Template code introduces excessive compiler overhead
– Explicit template instantiation
– Preprocessor macros make this easy

• Real codes always call other libraries
– BLAS/LAPACK
– CHEMKIN
– Linear/nonlinear solvers
– Template interfaces (partial template specialization) are general solution

• Operator overloading overhead
– Residual/derivative fills are not dominant cost



2Xj ! Xj−1 + Xj+1, j = 2, . . . , N − 1

u ·∇Yj +∇2Yj = ω̇j , j = 1, . . . , N − 1
N∑

j=1

Yj = 1

Steady-state mass transfer equations:

Scalability of AD in Charon

Scalability of the element-level derivative computation
Set of N hypothetical chemical species:

DOF per element = 4*N
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RAD
Forward mode AD
✓Faster than FD
✓Better scalability in number of PDEs
✓Analytic Derivative

Reverse mode AD
✓Scalable adjoint/gradient

JT w = ∇(wT f(x))



Si interstitial (I) (+2,+1,0,–1,–2)

Vacancy (V) (+2,+1,0,–1,–2)

VV (+1,0,–1,–2)

BI (+,0,–)

CI (+,0,-)

VP (0,–)

VB (+,0)

VO (0,–)

BIB (0,–)

BIO (+,0)

BIC

Annihilation

Annihilation

Defect reactions

QASPR 
Qualification of electronic devices in hostile environments

PDE semiconductor 
device simulation

Stockpile BJT



Charon Drift-Diffusion Formulation 
with Defects

Defect 
Continuity

Include electron capture and hole capture by defect species 
and reactions between various defect species

Electric 
potential

Electron 
emission/capture

Current 
Conservation for 

e- and h+

Cross section

Activation Energy
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Forward Sensitivity Analysis with Rythmos
• Discretized PDE system:

• Forward sensitivity problem

• Rythmos time integration package
– Todd Coffey, Ross Bartlett (SNL)
– Implicit BDF time integration method
– Variable order, step size
– Staggered corrector forward sensitivity 

method
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ImplicitBDFStepper ExplicitRKStepper …

NonlinearSolver

NOX TimeStepSolver

LinearSolver

Amesos

AztecOO Belos

Preconditioner

Ifpack ML

…

…

Epetra

Linear algebra data 
structures

Algebraic 
preconditioners and 
direct solvers

Iterative linear solvers

Iterative nonlinear 
solvers

…

Rythmos
Transient ODE/DAE 
forward sensitivity solvers

Derivatives Sacado



Sensitivity Analysis of a Pseudo-1D BJT
• 9x0.1 micron pseudo-1D simulation
• 1046x1 quad cells
• Linear finite elements + SUPG
• 2 carriers + 35 defect species
• 108,030 unknowns on 32 processors
• 84 carrier-defect reactions
• 126 parameters for sensitivity analysis
• Base current provides observation function

Transient Base Current
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Transient Base Current Sensitivities

p

I

dI

dp

# Reaction Parameter Value

14 activation energy 0.09

16 cross-section 2.40E-14

46 cross-section 1.50E-15

V −− → e− + V −

e− + V 0 → V −

e− + PV 0 → PV 0
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Comparison to Black-Box Finite Differences

• Run-times:
– Forward simulation:  105 min.
– Direct sensitivities:  931 min.
– Black-box, first-order FD:  ~13,000 min.

• Direct approach more efficient
– 14x speed-up

• Direct approach more accurate
– 1-2 correct digits w/FD
– FD requires tighter tolerances to 

achieve higher accuracy
• Direct approach more robust

– Accuracy solely dictated by time-
integration error

1st-order Finite Difference Error
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Summary

• Simple AD approach
–Apply AD at element-level
–Simple, fast, Sacado AD tools
–Templating

• AD + Rythmos provides remarkable improvements over black-box FD for 
transient sensitivities

–Efficiency, accuracy, robustness

• Transformational enabling technology
–Allows app developers to focus on physics, not derivatives
–Enables advanced embedded analysis provided by Trilinos
–Application templating provides algorithmic hooks


