
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 0

A Programming Model for Hybrid Parallelism
with Consistent Numerical Results

H. Carter Edwards

Sandia National Laboratory

SIAM Conference on

Parallel Processing for Scientific Computing

March 12-14, 2008

SAND2008-1459C

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 1

Two Coupled Topics
(Two Inconvenient Truths)

• Future parallelism includes multicore/manycore
– Many parallel processing cores within a single CPU socket

– Cores contending for shared memory resources

– Hybrid parallelism (shared/distributed) may be necessary

– Start with homogeneous cores, worry about heterogeneous later

• Floating point addition is NOT associative
– Most of us learned this, ignored it, and suffer non-determinism

– We tell users to expect results to vary with processor count

– At least your parallel results don’t vary from run-to-run (yes?)

– Hybrid parallelism can exacerbate this issue

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 2

Future: Networked Manycore Nodes

• Continue to have distributed memory parallelism
– Network of processing nodes

– Well understood programming model

– E.g. domain decomposition and MPI

• Multiple processing cores per node
– Cores-per-node = cores-per-socket * sockets-per-node

– Cores contend for socket’s cache memory

– Cores contend for access to memory hierarchy

– Scale node’s shared main memory by #cores or #sockets?

– Concern: per-core or per-socket memory overhead

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 3

Re-opened Dialogue on
Parallel Programming Model

• Scalability with respect to cores-per-socket

– Will unmanaged sharing of the socket-to-memory resource
limit scalability? (e.g., just doing MPI on the cores)

– Is intentional algorithmic management of this shared
resource possible? Will it make a difference?

• Per-core consumption of main memory

– If just doing MPI on the cores:

– Overhead of handing each core its own executable image

– Overhead of inter-core shared data

– Overhead of inter-core communication

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 4

Conclusion: We Need to Investigate
Hybrid Parallel Programming Model(s)

• Two level programming model
– Outer: distributed memory model (a.k.a. the MPI model)

– Inner: shared memory / parallel threads model

• Start investigating with …?
– Pthreads: library-based standard, does not define a model

– Intel TBB: C++ STL-like hiding of Pthreads, defines a model

– OpenMP: compiler-based standard, defines a model

– Other non-standard language?

• Evaluate performance
– Time and space

– Usability and robustness

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 5

A Hybrid Parallel Programming Model:
Inner Level Parallelism (for cores or sockets)

• Goals: highly portable, simple, minimize overhead,
applicable to nontrivial / complicated data structures

• Personal preference: standard C and C++, Unix-like OS
– Regrets to developers of new languages, language extensions

• Use Pthreads, but how?
– Oversubscribe cores or not?

• Answer: at most one thread per core

• Rational: avoid thread context switching overhead

• Concern: thread affinity to cores

– Persistent or transient threads?

• Answer: create once and re-use (thread pool)

• Rational: avoid thread creation / destruction overhead

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 6

Model for Inner Level Parallelism

• Simplicity: only parallel operation are parallel
– Sequential operations performed by a single thread

– Inner level parallel operations performed by all threads

– Inner level parallel operations have a local and temporary scope

– Conceptually compatible with OpenMP and TBB model

root
thread

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 7

Prototype Thread Pool Interface (for C)

typedef
void (*TPI_parallel_subprogram)(void * shared_data,

TPI_ThreadPool pool);

int TPI_Run(TPI_ThreadPool pool ,
TPI_parallel_subprogram routine ,
void * shared_data);

• ‘routine’ is called thread-parallel with:
– The thread pool environment in which the routine is run

– Shared ‘routine_data’; never use shared global data!

– Use ‘routine_data’ to pass in work, e.g. a ‘struct’ or ‘class’

– Include work partitioning or work stealing parameters

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 8

Prototype Use in ‘C’: A simple ‘dot’

struct TaskXY { /* routine data */
double sum ;
const double * x ;
const double * y ;
unsigned n ;

};

double tpi_ddot(TPI_ThreadPool pool, unsigned n,
const double * x, const double * y)

{
struct TaskXY data = { 0.0 , x , y , n };
TPI_Set_lock_size(pool , 1);
TPI_Run(pool, & tpi_ddot_work , & data);
return data.sum ;

}

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 9

Prototype Use in ‘C’: A simple ‘dot’

void tpi_ddot_work(void * arg , TPI_ThreadPool pool)
{

struct TaskXY * const t = (struct TaskXY *) arg ;

/* … partition the work among threads … */

unsigned local_n = … ;
const double * local_x = … ;
const double * local_y = … ;

double local_sum = ddot(local_n, local_x, local_y);

TPI_Lock(pool,0);
t->sum += local_sum ;
TPI_Unlock(pool,0);

}
• Non-determinism: partitioning and race to t->sum += local_sum

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 10

Change the Parallel Programming Model?
An Opportunity to Fix Non-determinism!

• The same application solving the same problem should
yield the same answer – regardless of parallelism
– Typically violated when:

– using a different number of processors

– using a different decomposition on the same processors

– hopefully not for same decomposition & same processors!

– But could be for thread-parallel race condition

• Non-deterministic behavior is user-hostile
– Which is the “right” answer? A verification issue

– How to deal with a bug occurring on 1000s of processors that
cannot be repeated when debugging on fewer processors?

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 11

A Common Source of
Non-determinism in Parallel Programming

• Floating point summation: a[i]

– Intrinsic error = n*, for non-negative values

– Repartitioning yields a different answer (number nodes)

– Reordering yields a different answer (domain decomposition)

– Small n  enforce a consistent ordering

– Large n  reduce 

• Algorithmic
– E.g., domain decomposition (DD) dependent algorithms

– Decouple algorithm’s DD from number of nodes or threads

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 12

Prototype Use in ‘C’: Deterministic ‘dot’

• Non-determinism from lack of associative addition

– Given floating point precision of  (~1e-16 for double)

– Error in a[i] is O(n*), given best case of 0  a[i]

• Two summations, two sources of non-determinism
– Algorithm sums within threads, and then sums among threads

among threads:  (within each thread:  a[i])

– Different number of threads yields different partial sums

– Race condition to contribute each thread’s partial sum

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 13

Prototype Use in ‘C’: Deterministic ‘dot’

• Restore determinism via improved accuracy summation

– Provide “error free” result, i.e. error < 
• Accumulate positive & negative contributions separately

• Accumulate in double-double precision

• Error is now O(n**) < O() for n < 1,000,000,000,000,000 < 1/
– Additional cost? 6 extra adds and 2 branches per term

• Total 10 flops / 2 doubles

• ‘dot’ is a bandwidth-limited operation

• “Free” in-register flops?

• Use double-double reduce op in the MPI_Allreduce

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 14

Extended Precision DDOT Performance: Barcelona, Intel, OpenMPI

(CACHE CLEARED)

0

500

1000

1500

2000

2500

3000

1000 10000 100000 1000000 10000000

Vector Length

M
fl

o
p

s

M1-T1

M1-T2

M1-T4

M1-T8

M2-T1

M2-T2

M2-T4

M4-T1

M4-T2

M8-T1

Scaling of High-Accuracy ‘dot(x,y)’

• Barcelona (AMD 2x4core) with OpenMPI

• Hybrid parallel: #Processes = MPI*Pthreads

• MPI_Allreduce overhead is expected; Scaling is great

8

4

2
1

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 15

Scaling of High-Accuracy ‘dot(x,y)’

• Clovertown (Intel 2x4core) with MPICH

• Hybrid parallel: #Processes = MPI*Pthreads

• MPI_Allreduce overhead! Memory bandwidth saturates!

Extended Precision DDOT Performance: Covertown, GNU, MPICH

CACHE CLEAR

0

500

1000

1500

2000

2500

3000

3500

4000

1000 10000 100000 1000000 10000000

Vector Length

M
fl

o
p

s

M1-T1

M1-T2

M1-T4

M1-T8

M2-T1

M4-T1

M8-T11

2

4
8

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 16

Work Partitioning (a.k.a. Load Balancing)

• Dot product example – trivial load balancing
– Partition vector into #threads ~equal length subvectors

– sum(dot(x_p , y_p))

• Work partitioning not always so easy
– Apply F(a[i] , b[i] , c[i] , …); work is non-uniform (nonlinear)

– Data structure for ‘N’ arrays?

– Time to pre-partition vs. time lost to imbalance?

– “Just in time” load balancing via “work queue” approach

• Work queue (a.k.a. task pool)

– Arbitrarily overpartition problem into pool of M chunks of work

– E.g., F() applied to disjoint subsets of a[i], b[i], c[i], …

– Could be heterogeneous: different functions and data

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 17

Work Queue Parallelism (a.k.a. task pool)

• Threads share a queue of work
– Simple linear queue, or graph of dependent units of work

– Each thread:

1. Lock work queue iterator

2. Claim chunk of work / advance work queue iterator

3. Unlock work queue iterator (release lock ASAP)

4. Perform work on chunk

5. Repeat until work queue is empty

• Performance

– Load balancing is approximate – last thread to finish

– Overhead – work queue iterator locking & unlocking

– Tuning – chunks of work large enough to amortize overhead but
not so large as to cause severe imbalance

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 18

Summary

• Networks of manycore nodes are coming, ready?
– Scalability with increasing cores per socket

– If pure MPI, critical to have multicore leveraging implementation

• Pure MPI or hybrid MPI / thread programming model?
– Hybrid may be necessary to address memory access contention

– Hybrid can help with inter-core communication

– Hybrid provides new opportunities for load balancing

• Time (past time) to address non-determinism

– Same application and same data  give the same answer

– Independent of #nodes, #sockets, #cores, domain decomposition

– Will require greater discipline in algorithms and data structures

