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'
y “at is Peridynamic Theory?
ridynamic theory is a theory of continuum
mechanics that uses differo-integral equations
without spatial derivatives rather than partial

differential equations.

— Reformulation of fundamental equations that applies
everywhere regardless of discontinuities

— Peridynamic means “near force”.
— Theory first published in 2000 by Stewart A. Silling
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Why Use Peridynamics?

 The fundamental partial differential equations
used in conventional finite element codes do
not apply at discontinuities such as cracks.

Real life:
Discontinuities can evolve in
complex patterns not known

in advance.

* With peridynamics, cracks initiate and grow
spontaneously and there is no need for
externally supplied “crack growth laws”.
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mental Peridynamics Equation

Configuration
Variables

c=x"'-x

n=u(x',t)—u(x,t)

X

(x)—u(x 1) = [ﬂ” fu(x',t)—u(x,t),x'-x)dV"'+ b(x,t)

where

p 1s the density at x, x 1s the position vector,
t 1s the time, u is the displacement vector,

R 1s the computational domain, f is the pairwise force function, and
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rial Modeling in Peridynamics

e force per unit volume squared between
particles located a two points is given by the

pairwise force function (PFF) f. ]
— Peridynamic interaction between two points is /zf‘o
called a bond. S

« Constitutive properties of materials are given
by specifying the PFF.

— Thus, material response, damage, and failure are
determined at the bond level.

 Bond properties are derivable from measured
material properties including:

— elastic modulus, yield properties, and fracture

toughness. |
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'
M of the Pairwise Force Function
*“"Newton’s third law of motion implies that the PFF
satisfies
f(_ﬂﬂ_é) — _f(ﬂaé) v”aé

* Furthermore, conservation of angular
momentum implies that the PFF satisfies

(+<)x f(n,6)=0
 These properties imply that the PFF is of the form

f(m,&)=F@,&)n+¢) where F(—n,—¢)=F@.,¢)

* For isotropic materials, /' has the form

F(n,&)=1(p,q,r) where p=n+¢,q=n&, r=¢
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'
Mo-Elastic (Plastic) Materials

**A PFF is said to be micro-elastic (ME) -plastic
(MP) if and only if there exists a scalar function,

St e =2 o)

A ME material is said to be proportional if and

only if the PFF is proportional to the stretch, s,
where s=(p—r)/r.

* Failure occurs when s exceeds a value, s, called
the critical or failure stretch (FS).

 |sotropic, proportional ME materials have

1 where g(s,7) 1s a piecewise
Fn,s)=—g(s,r) _ | |
p linear function of s. @ Sandi
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o-Elastic and -Plastic Materials

he difference between isotropic, proportional

micro-elastic and micro-plastic materials is their

behavior on unloading.

A

Bond Force

= Bond failure
Compression / Tension <J

»

Bond Force

Compression

/

g\ Loading

= Bond failure
/\/ Unloadnig/
Ténsion "

S Bond Stretch
&
g

Micro-Elastic

Yielding

Bond is a spring in these cases.

* For extreme loading analyses, we use isotropic,

proportional, micro-elastic (plastic) materlal. Sandi

Bond Stretch

Micro-Plastic
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Damage

>

« At time {, consider a node at position x.

* Let V,(x,t) denote the volume of the material
initially connected to x but whose bonds with
x have been broken and let V,(x) denote the
volume of material initially connected to x.

 Then the damage D(x,t) is defined as
D(x,t) =V 4(x,t)/V,(x)
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Gravitational Forces

>

* Gravity is important to determine the long term

consequences of impacts to structures.

 We include gravity as a body force

b(x,t) = p(x)g
— p(x) is the density and

— g is the acceleration due to gravity, g =9.814 m/s?2.

A &

(&)
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'

4 ; " Numerical Method
» The computational region is

discretized into nodes with a

known volume in the

reference configuration,
forming a grid of nodes.

 The fundamental equation is replaced by a
finite sum, which at time ¢, is

—u _Zf(u —u;,x,—x)V +b', u =u(x,t,)

* For each node, the peridynamic interaction is
assumed to be zero outside a distance 6
called the horizon. @Sma
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entation in EMU Computer Code

* Peridynamic theory is implemented in the
EMU computer code.

- EMU s

— mesh free (no elements, just generate a grid of
nodes),

— Lagrangian (each node represents a fixed amount
of material),

— explicit (simple, reliable time-integration method),
— parallel (executes on multiple processors).
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ulse Impact Loading of a Structure

o

o
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Damage at 0.64 s
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| 'EMU Detonation Model

* 'Detonation model inputs:

— Location of detonation point(s) and initial detonation
time(s), density of unreacted explosive, and detonation
speed.

— Parameters for equation of state (ideal gas or JWL).

 Program burn model for detonation times.

 Detonation times computed prior to time advancement
using Huygen’s construction.

— Detonations can propagate around obstacles.
 Upon detonation:

— Reaction products are treated as ideal or JWL gas
undergoing an adiabatic expansion.

— Energy conserved using volume-burn algorithm.@ Sandia
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A
 Huygen’s Construction

 Reliable, time-tested method used since
1950’s)

Program Burn

5. 960E-03
! Z.T7E8E-03

2. 494E-075

2. 249E-05

J.004E-03

Zy TURE-0Q T

detonation time
not calculated

2.514E-05

Z.263E-05

Z.0Z4E-03

1.7739E-073

1.2%4E-03

1.2889E-03

detonation time
calculated

1.044E-03

T.995E-DE

3.343E=0E

3. 085E-06

. PUQE-QT

| initial detonation point ~ Detonation Times

Huygen’s Construction illustrated in
Two Dimensions
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'

J z '%s as Peridynamic Materials
*¥Since detonation products are gases, gases

must be modeled as peridynamic materials.

« Consideration of the energy required to stretch a
bond leads to the following PFF for a gas:

m+1
fi = - 6P (rk ) y Hmi3 where
nV \ by

p=n+¢&|, r=|&, Vis volume, P is pressure,

B 1-3/m

1 7. m In the
=l VZH AV, | v A e
P i J Pj i EMU, m=1.

p 1s the density in deformed_conﬁguration,

P, 1s the density in undeformed configuration () i
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@Y Jones-Wilkins-Lee (JWL)

-
}' Equation of State

 JWL Equation of State (EOS), pressure

X - expansion

Remaining quantities
are JWL parameters.

 Expansion Isentrope: pressure
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Pressure (P)

Volume Burn Algorithm

IVCJR(V)dV i ijDP(V)dV - jwfg(V)dV

" Ves "

« Algorithm is statement of energy conservation.
* P, is density of unreacted explosive.

« Rayleigh line, reaction product Hugoniot, and reaction
product isentrope are tangent at the CJ point.

For an ideal gas, Py, = 72 P,
(VoPso)

i

(VCJ’ P CJ)

-

Rayleigh Line, R(V)

Isentrope for Detonation Products
Referenced to V,,, Pg(V)

/

(Vo Po) \

Isentrope for Detonation
Products, Ppyp(V)

Specific Volume (V) @ Natrl
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ast Loading of a Structure

Structure has 6-ft thick walls and floor slab. The floor slab is 40 ft by 52 ft. The
walls are 45 ft above the floor. All concrete is reinforced with #18 rebar at 12-in
spacing. A cubic yard of explosive with unreacted density 1785 kg/m?3 and
detonation speed 8747 m/s is placed on the floor at the center of the wall and
detonated at time zero.

-
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ion and Validation (V&V) Process

* Objective of V&V Process

— To obtain confidence in the predictive capabilities
of EMU for warhead fragmentation.

« What are Verification and Validation?

A V&V Process for Warhead Fragmentation
using EMU

— Comparison with Fragmentation Tests of an
Exploding Munition (ALACYV)

— Predictions for an Exploding Cylinder

— Sensitivity of Mass Distributions to Sound Speed
and Yield Stress

— Future V&V Work
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are Verification and Validation?

» “Verification: The process of determining that a
model implementation accurately represents the
developer’s conceptual description of the model
and the solution to the model.

— Code Verification: Activities directed toward:

* Finding and removing mistakes in the source code

* Finding and removing errors in numerical algorithms

* Improving software using software quality assurance practices
— Solution Verification: Activities directed toward:

« Assuring the accuracy of input and output data for the problem
of interest

- Estimating the numerical solution error
« Validation: The process of determining the degree
to which a model is an accurate representation of
the real world from the perspective of the
@ﬁan_dia
ational
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Predictive Capability

Best Eatimate + Uncertainty

Application of
Interest

Uncertainty Quantification Activities

Model Uncertainty Sensitivity Analysia Application Environments
Maodeal form uncartainty Initial conditions Mormal environmenl
S sty Coyeea i (i e

BITHR RIS B SN VIronmEn
Extrapolalion uncerainly i

Verification
and
Validation
(V&V) are on
the path
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V&YV Problems

The real world is harsh — neither verification or
validation is likely to be completed given finite
resources and the complexity of the problems we care
about.

2. Weak inference; large extrapolation

* No overlap of application
domain and validation
database

* Large extrapolations
typically occur in terms
of meta-coordinate
directions, such as:

— Large changes in
physical complexity

— Introduction of new
physics coupling

— Introduction of coupling

between subsystems or
components

\ Application
\ Domain

physical and geometrical complexity

Sandia
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Reality of Interest
{Component, Subassembly, Assembly, or System)

Abstraction

Conceptual

dation Is An lterative Process

Fragmentation of Munitions

Model

r 1
Mathematical Physical
Modeling Modeling
d? :
X)—u(x,t)= o <
p( )dt2 (6.1) = Mathematical |} Physical !
o Model Model
[ﬂ” fu(x'0) - u(x.0.x'-x)dV' +b(x.p) - ———
. Code Implementation " Implementation
Verification
\
d’? 1 c tati | Preliminary Experiment |
“w o oon n__.n _ n i omputationa 3
Pi dr? uw = Zf(up u,x, xi)Vp + b, =% Model Calculations '
P ‘ ~ -
I
Calculation Calculation Experimentation
Verification
\
o e u - Simulation Experimental
g - T Results Data
gz: /,"% T Uncertainty Validation Uncertainty
i o ,I/ — B Quantification % “.  Quantification
E 03 £ \‘
- Simulation Quantitative Experimental
0.0000 0.0100 0.0200 M&:l;:m 0.0400 0.0500 . Qutcomes Compaﬂsoﬂ Qutcomes

Modeling, Simulation Acceptable

No

& Experimental Activities Agreement?_

= = = = Agsessment Aclivilies

Ref: ASME Guide, 2006

Next Reality of Interest in the Hierarchy )

Revise
Appropriate
Model
or
Experiment
: I i s A .
g 08
E 07 — —
RO ZT
§os i Mo -
——EMU (ase)
ol
E 0.2
01
o:m 0.0100 2000 o —= an
Mass (kg)
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agmentation of Exploding
Munitions

Explosive Shell EMU Model

explosive

f___“Kinetic Energy

Y S.401E+03

aluminum fill
steel closure disk

Fragment |
Velocity | ™| 3.176E+03

Vector
2.951E+03

Z.T7ZEE+DZ

steel fragmenting shell

- 2.500E+03
i m | S R o
: 7 —— i, i ¢ i S.375E403
5 . PR
s — 2.0S0E+03
T B e 1.825E+03
2 o e :
5 08 =
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2 05 e G203
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E e E L
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0.1
e E.G83E+02
0.0000 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 A.730EC0 2
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o Z_478E+02
. . . . . . . . 0.000E+00
Cumulative Mass Distribution Fragment Velocity Distribution
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S.3960E+00
3.740E400

3. 435E+00
5. 2489E+00
S.004E+00
4, 7E0E+QQ
4.515E+00
4. ZB3E+00
4.0Z4E+00
Z.780E+0D
F.094E+DD
Z.Z288E+400
F.044E+00
Z2.789E+00
Z.334E+00
2.309E+010

Z.040E+0Q 0
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Test 27.6 ps 45.2 us

Simulation Results
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ensitivity to Failure Stretch

« Compare data for tests with simulation results with

failure stretch varying from 0.10 to 0.20 to show

importance of characterizing material properties.

Cumulative Mass Distribution

o7 .=
0-9 N /l' ---------- L
0.8 —
0.7 - il
06 1 - - - -4-810
05 - - - - -4-823
0.4 EMU (FS = 0.10)
. EMU (FS = 0.12)
0.3 EMU (FS = 0.14)
— — EMU (FS =0.16)
0.2 - EMU (FS = 0.18)
0.1 EMU (FS = 0.20)
0.0 ‘ ! :
0.0000 0.0100 0.0200 0.0300 0.0400 0.0500
Mass (kg)
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Explosive

41in Metal

Cylinder

Cross Section of Cylinder
Filled with explosive

Test Configurations Simulated

Explosive Mass of
Material Treatment Loading Cylinders (g)
4340 HTA1 PBXN-9 239.9
4340 HT2 PBXN-9 238.18
4340 HT3 PBXN-9 239.93
1018 None TNT 250.55
1018 None PBXN-9 238.61

HT1

Currently unspecified from LLNL

HT2

870 C for 2 hours Oil Quench, 325 C 2 hours Oil Quench

HT3

870 C for 2 hours Oil Quench, 450 C 2 hours Oil Quench

(&)
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Mass Distributions

- —_

0.0000

0.0025

0.0075 0.0100 0.0175

Mass (kg)

0.0125 0.0150

EMU Simulation

'Predicted Cumulative

— 4340 HT1

PBXN-9

4348 HT2
PBXN-9

4340 HT3
PBXN-9

1018 TNT

1018 PBXN-9

Fragment Mass

maximum average

(8.86 g)

(16.1 g)

(115 g)

(7.04 g)

(6.16 g)

(25.6 mg)

(92.4 mq)

(52.3 mg)

(17.1 mg)

(14.5 mg)
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ed Fragment Locations (100 us)
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Explosive Testing TNT w/ 1018 Steel

10.33 in
< P
1.27 in
e
{8 ;
T A :
i y .‘"-. g’
: |:< %‘%& ] . =
R % il e

W\ : S \

X-Ray Pulse at To + 100 262 us
Det output at To +3 us

Shock arrival at center of charge %t To
6.426 ps '

Horizontal flight distance =4.530 in
‘Fragment velocity = 1267 m/s




Explosive Testing PBXN-9 w/ 4340 Steel

13.27 in

1.27 in

X-Ray Pulse at To + 100.778 ps
Det output at To +3 ps W,

Shockarrival at center of charge at To +
6.426 pys

Horizontal flight distance =5.998 in
Fragment velocity = 1668 m/s
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Engineering stress (MPa)

Stress Versus Strain for 4340 Steel

2000 : ] : ; :
——— HT1
——HT2
1500 |
= /\ —HT3
1000 | L
500 | '
0L Failure o
| 1 | 1 |
0 005 01 015 0.2 025

What is yield stress from these figures?

Engineering strain

Engineering Stress (MPa)

V
| %ples of Stress-Strain Data

A

Stress Versus Strain for 1018 Steel

500

400 -

300 -

200

100 -

Failure

0.1

0.2 0.3
Engineering Strain
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Cumulative Mass Distribution

Ivity of Mass Distributions to

ound Speed and Yield Stress

Fragment Mass

maximum average

// S 0T (8.869)  (25.6mg)
7 poesed , (7269) (217 mg)
Som omeeq (8700)  (33.3mg)
Vo siess (1320) (474 mg)
Decreased  (3.52g)  (10.3mg)
0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150
Mass (kg)

. Base case (4340 steel with HT1)

— Sound Speed is 4228 m/s.

— Yield Stress is 750 MPa.
. Sound Speed Sensitivity is £ 35%.
. Yield Stress Sensitivity is £ 50%.
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sions from Sensitivity Simulations

 Purpose
— To determine effects on fragmentation of uncertainty in micro-
plastic inputs sound speed and yield stress
* Necessary since material property data is not “text book perfect”.

e Sound Speed = \/(bulkmodulus)/ density

— Average fragment mass decreases and number of fragments
increases with increasing sound speed

« Sound speed varies directly with square root of bulk modulus.
« Sound speed varies inversely with square root of density.

* Yield Stress

— Average fragment mass increases and number of fragments
decrease with increasing yield stress.
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Ing Yield Stress for Linear Flat MP

Bond Force
g\ Loading
Bond failure
Unloadirig
Compression Tgnsion o
Bond Stretch
500
e
: T 400 - \\\\ |
Yield Stress = .Y
112
o 300 —/ -
b
e
Z 200 Area under linear flat curve -
same as area under stress
strain curve to failure
100 -~ =
Slope
determined by : | |
Young’s modulus 0 0.1 0.2 T 0.3

Engineering Strain - . ﬁggigﬁal
Critical Strain {alicritneiia



'
Merification and Validation Work

 Perform experiments for validation process.
« Continue V&YV iterative process.
« Document V&V process.

« Transfer the EMU fragmentation modeling
capability to the military labs.

(&)

Sandia
National
Laboratories



mics Research and Development

urrent R&D includes

— modeling fluids, composite materials, and explosive
materials and explosive loading

— verification and validation

— modeling shock loading, using adaptive grids and
general Poisson ratio

— software engineering
— state-based peridynamics
— nanoscale to continuum coupling

 Future R&D possibilities include
— peridynamics, finite-element coupling

— inclusion of additional physical processes to provide
a comprehensive methodology for vulnerability -
assessment of critical structures i
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* Google on “peridynamic” or access Wikipedia at
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