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Outline

• Adaptive mesh refinement (AMR)

• Parallel AMR: Performance, scalability, and 
adaptive partitioning (AP)

• Reducing data migration at algorithm switching: 
uniform starting points (USP) and switching 
penalties (SP)

• Hypothesis: AP w/ USP/SP outperforms both 
static partitioning and “regular” AP

• Experimental setup: Applications, partitioners, 
the simulator, the cost function, and parameter 
space

• Results, conclusion and future work



AMR Case Study: Quake [Norton, Jet Propulsion Lab, NASA]



Quake: A Closeup

1.6M elements



Data Partitioning and Scalability

• Solution features drive the mesh dynamics

• As the mesh changes, the partitioning 
requirements change

• Consider the current run-time state for selecting, 
configuring, and invoking the most suitable 
partitioning algorithm 

• Dynamically adaptive partitioning

• Considerable amount of work for structured AMR

• How to make effective for unstructured AMR?



Example: RCB vs. PartKWay for Laser-Raster

 To get the best possible parallel efficiency, we need  
adaptive partitioning



Dynamic PAC

Classification 
of current 

application 
state

Classification of 
current 

computer state

Determination 
of partitioning 
configuration

Invoke  P

The Meta-Partitioner

P

PP

PPP …

… …

……

P

Database of 
partitioning 

configurations

Partitioner-
centric

classification 
space

Partitioner

Application

Computer



Adaptive Partitioning: A Database Approach
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Suspicious Metrics (Data Migration)
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Data Migration Problem for Adaptive Partitioning

• Partitioning algorithms fundamentally different

• Their native mapping of data onto processors 
might be fundamentally different

• At run-time, switching to a theoretically superior 
algorithm, might incur substantial data migration



Remedies

• Uniform starting point (USP)

• Switching penalties (SP)
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Switching Penalties (SP)
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Uniform Starting Point + Switching Penalties
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Adaptive mesh as a 
sequence of serial
Exodus II files

The Parallel Mesh Application 
Simulator
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Real-World AMR Applications

Quake MachStem

Laser-Raster Convection



Application Specifics

Applic. Elmnt Dim Steps Avg E Max E

Quake Tetra 3 6 308K 1.6M

Mach-

Stem

Quad 2 109 8.2K 13K

Laser-

Raster

Cube 3 65 4.4K 10K

Conv. Tetra 3 73 87K 94K



The Partitioners

• Need partitioners from different classes with 
fundamentally different properties:

• RCB: Zoltan native; geometric

• RCB+Remap: Zoltan native; geometric; 
scratch/remap

• AdaptiveRepart: ParMetis; graph-based; 
incremental or scratch/remap (adaptive)



Experimentation

• Hypothesis: Adaptive partitioning with USP/SP is 
beneficial within our experimental parameters

• Measure partitioner impact with cost function

• Chose parameters for “equal contribution” 

• f=1; 2; 4; ITR=0.25; 0.5; CCR=0.25; 0.5; 1.0;

• Two sets of data; two sets of #p

• Static: RCB, RCB+Remap, AdaptiveRepart 

• Opt(f) (min cost for each timestep for f) 

• Adaptive(f) (true adaptive for f, determined by 
Opt)



Results: Quake



Results: MachStem



Results: Laser-Raster



Results: Convection



Results: Summary

• Adaptive partitioning with USP/SP outperformed 
the best static algorithm in about 40% of the 
experiments

• AP with USP/SP generally improved on “regular” 
AP (about 75% of the experiments).

• Adaptive partitioning performs slightly better for 
8 (32) processors than for 16 (64).

• No clear correlation between CCR, ITR, and f
compared to the effectiveness of the AP.



Conclusions and Future Work

• AP seems applicable in a variety of (hard to 
define) AMR conditions

• Future work includes (a) finding better ways to 
estimate data migration due to different native 
data mappings, and (b) gaining a better 
understanding of conditions beneficial for AP

• New hypothesis: Smarter migration estimation & 
leveraging better understanding of conditions 
AP beneficial for vast gamut of application-
computer combinations



Questions?

• Read more on http://hpcn.sandia.gov/~jsteens


