
Reducing Data Migration in the Context of
Adaptive Partitioning for AMR

The 19th IASTED International Conference on

Parallel and Distributed Computing and Systems 2007

November 19, 2007

Johan Steensland
Advanced Software R&D, Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND2007-7493C

• John Peterson, CFDLab, University of Texas

• Karen Devine, Richard Drake, and James
Overfelt, Sandia, NM

• Henrik Johansson, Uppsala University, Sweden

• Charles Norton, Jet Propulsion Lab, NASA, CA

• Jaideep Ray, Sandia, CA

Credits

Outline

• Adaptive mesh refinement (AMR)

• Parallel AMR: Performance, scalability, and
adaptive partitioning (AP)

• Reducing data migration at algorithm switching:
uniform starting points (USP) and switching
penalties (SP)

• Hypothesis: AP w/ USP/SP outperforms both
static partitioning and “regular” AP

• Experimental setup: Applications, partitioners,
the simulator, the cost function, and parameter
space

• Results, conclusion and future work

AMR Case Study: Quake [Norton, Jet Propulsion Lab, NASA]

Quake: A Closeup

1.6M elements

Data Partitioning and Scalability

• Solution features drive the mesh dynamics

• As the mesh changes, the partitioning
requirements change

• Consider the current run-time state for selecting,
configuring, and invoking the most suitable
partitioning algorithm 

• Dynamically adaptive partitioning

• Considerable amount of work for structured AMR

• How to make effective for unstructured AMR?

Example: RCB vs. PartKWay for Laser-Raster

 To get the best possible parallel efficiency, we need
adaptive partitioning

Dynamic PAC

Classification
of current

application
state

Classification of
current

computer state

Determination
of partitioning
configuration

Invoke P

The Meta-Partitioner

P

PP

PPP …

… …

……

P

Database of
partitioning

configurations

Partitioner-
centric

classification
space

Partitioner

Application

Computer

Adaptive Partitioning: A Database Approach

},,,,{ 321 mssssS Scientific application S with m timesteps: sequence of meshes

)}(,),(),(),({ 321 321 moooo sPsPsPsPA
m

Adaptive partitioning:

},,,,{)(11
3

1
2

1
11 mSP  

},,,,{)(22
3

2
2

2
12 mSP  

},,,,{)(321
n
m

nnn
n SP  

A set of n partitioning algorithms
operating on S:



sequences of partitioned
meshes

Quality
METRICS

},,,,{),(minindex),(Opt
3211

:2
:1 moooo

i
j

i
j

mj
ni

PPPPPS  




Cost function:

sequence of partitioners

},,,,{)(11
3

1
2

1
11 mSP  

},,,,{)(22
3

2
2

2
12 mSP  

},,,,{)(321
n
m

nnn
n SP  

A set of n partitioning algorithms
operating on S:



sequences of partitioned
meshes

Suspicious Metrics (Data Migration)

},,,,{ 321 mssssS Scientific application S with m timesteps: sequence of meshes

},,,,{),(minindex),(Opt
3211

:2
:1 moooo

i
j

i
j

mj
ni

PPPPPS  




Cost function:

sequence of partitioners

)}(,),(),(),({ 321 321 moooo sPsPsPsPA
m

Adaptive partitioning:

Quality
METRICS

Π(…)  ?

Data Migration Problem for Adaptive Partitioning

• Partitioning algorithms fundamentally different

• Their native mapping of data onto processors
might be fundamentally different

• At run-time, switching to a theoretically superior
algorithm, might incur substantial data migration

Remedies

• Uniform starting point (USP)

• Switching penalties (SP)



},,,,{)(11
3

1
211 m

kSP  

},,,,{)(22
3

2
212 m

kSP  

},,,,{)(321
n
m

nnk
n SP  

A set of n partitioning algorithms
operating on S:

sequences of partitioned
meshes

Uniform Starting Point (USP)

Create more predictable sequence differences by

a) Selecting a scratch/remap technique
kn
11

3
1

2
1

1
1  

kP

b) Forcing

 Greater probability for and being more similart
i

t
j

Switching Penalties (SP)

),(migr)(edgecITR)(loadimbCCR),(11   t
j

t
i

t
i

t
i

t
j

t
i

Original function for estimating the cost of invoking
partitioner i at timestep t:



 


otherwise1

for
)(

SI
i PPf

fF

IP

SP

Set of incremental algorithms

Set of scratch/remap algorithms
Quality

METRICS

),(migr)()(edgecITR)(loadimbCCR),(11   t
j

t
i

t
i

t
i

t
j

t
i fF

New cost function:

Uniform Starting Point + Switching Penalties

},,,,{ 321 mssssS Scientific application S with m timesteps: sequence of meshes

},,,,{),(minindex),(Opt
3211

:2
:1 moooo

i
j

i
j

mj
ni

PPPPPS  




Cost function:

sequence of partitioners

)}(,),(),(),({ 321 321 moooo sPsPsPsPA
m

Adaptive partitioning:

},,,,{)(11
3

1
211 m

kSP  

},,,,{)(22
3

2
212 m

kSP  

},,,,{)(321
n
m

nnk
n SP  

A set of n partitioning algorithms
operating on S:

sequences of partitioned
meshes

Quality
METRICS

Adaptive mesh as a
sequence of serial
Exodus II files

The Parallel Mesh Application
Simulator

time

Exodus
reader

Pre-partition with
respect to current

partitioning

Repartition with the
settings of choice

Derive metrics:
• Data migration
• Edge cut
• Load imbalance
• Border elements
• Partitioning time

Zoltan:
• ParMetis (…)
• RCB
• RIB
• HSFC

First
timestep?

No!No!

Statistics data files Statistics data files
and plots

Partitioning
parameters

Real-World AMR Applications

Quake MachStem

Laser-Raster Convection

Application Specifics

Applic. Elmnt Dim Steps Avg E Max E

Quake Tetra 3 6 308K 1.6M

Mach-

Stem

Quad 2 109 8.2K 13K

Laser-

Raster

Cube 3 65 4.4K 10K

Conv. Tetra 3 73 87K 94K

The Partitioners

• Need partitioners from different classes with
fundamentally different properties:

• RCB: Zoltan native; geometric

• RCB+Remap: Zoltan native; geometric;
scratch/remap

• AdaptiveRepart: ParMetis; graph-based;
incremental or scratch/remap (adaptive)

Experimentation

• Hypothesis: Adaptive partitioning with USP/SP is
beneficial within our experimental parameters

• Measure partitioner impact with cost function

• Chose parameters for “equal contribution” 

• f=1; 2; 4; ITR=0.25; 0.5; CCR=0.25; 0.5; 1.0;

• Two sets of data; two sets of #p

• Static: RCB, RCB+Remap, AdaptiveRepart 

• Opt(f) (min cost for each timestep for f) 

• Adaptive(f) (true adaptive for f, determined by
Opt)

Results: Quake

Results: MachStem

Results: Laser-Raster

Results: Convection

Results: Summary

• Adaptive partitioning with USP/SP outperformed
the best static algorithm in about 40% of the
experiments

• AP with USP/SP generally improved on “regular”
AP (about 75% of the experiments).

• Adaptive partitioning performs slightly better for
8 (32) processors than for 16 (64).

• No clear correlation between CCR, ITR, and f
compared to the effectiveness of the AP.

Conclusions and Future Work

• AP seems applicable in a variety of (hard to
define) AMR conditions

• Future work includes (a) finding better ways to
estimate data migration due to different native
data mappings, and (b) gaining a better
understanding of conditions beneficial for AP

• New hypothesis: Smarter migration estimation &
leveraging better understanding of conditions 
AP beneficial for vast gamut of application-
computer combinations

Questions?

• Read more on http://hpcn.sandia.gov/~jsteens

