SAND2008- 0859C

Secure Obfuscation of Deterministic Finite Automata
(Extended Abstract)

ERIK ANDERSON*

Sandia National Laboratories

Abstract

In this paper, we show how to construct secure obfuscation for Deterministic Finite Au-
tomata, assuming non-uniformly strong one-way functions exist. We revisit the software pro-
tection approach originally proposed by Ostrovsky [19] and revise it to the current obfuscation
setting of Barak et al. [2]. Under this model, we introduce an efficient oracle that retains some
“small” secret about the original program. Using this secret, we can construct an obfuscator
and two-party protocol that securely obfuscates Deterministic Finite Automata against mali-
cious adversaries. The security of this model retains the strong “virtual black box” property
originally proposed in [2] while incorporating the stronger condition of dependent auxiliary in-
puts in [16]. Additionally, we further show that our obfuscation techniques remain secure under
concurrent self-composition with adaptive inputs.

Keywords: Obfuscation, deterministic finite automata, state machines, authenticated encryption,
oracle machines, provable security, game-playing.

1 Introduction

Program obfuscation, if possible, would have a considerable impact on the way we protect software
systems today. It would be instrumental in protecting intellectual property, preventing software
piracy, and managing use-control applications. Since its inception, many practitioners have relied
on using heuristic notions of security [10]. These heuristics often provide a false sense of security,
as they are often informal and lack a rigorous framework. It wasn’t until recently, that a formalized
framework of obfuscation had been given.

The work of Barak et al. [2] initiated the first formal study of obfuscation. They define an
obfuscator O to be an efficient, probabilistic compiler that takes a program P and transforms it
into a functionally equivalent, yet unintelligible program (O(P). Unintelligible is defined in the
strictest sense, to imply that the program O(P) behaves ideally like a “virtual black box”. That is,
whatever can be efficiently extracted from the obfuscated program can also be extracted efficiently
when only given oracle access to P.

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy under Contract DE-AC04-94AL85000. Email: weander@sandia.gov

Obfuscated
Code

Unobfuscated
Code Compiler

Remove Communication
Code Link
Protected Volume . . Oracle

Figure 1: Obfuscation with respect to oracle machines

Unfortunately in [2], it was proven that obfuscation in general is impossible. Namely, there exist
a family of functions that are unobfuscatable under the “virtual black box” notion of security. This
would seem to suggest that having physical access to the program is a much stronger capability
than only having access to it’s input and output behavior. In addition to this main impossibility
result, the authors also prove that, if secure symmetric key encryption schemes exist, pseudorandom
functions exist, or message authentication schemes exist, then so do unobfuscatable versions of each.
Therefore, it would appear that the “virtual black box” property is inherently flawed, and if we
hope for any positive obfuscation results, then either this model needs to be abandoned or else we
need to accept that many programs are obfuscatable [2].

Numerous other impossibility results have also shed light on the problem of obfuscation. For
example in Goldwasser et al. [16], they showed that when auxiliary inputs are added to the obfus-
cation model, then many natural circuit classes are unobfuscatable. Auxiliary inputs provide for a
more robust model of obfuscation, since the adversary is assumed to have some a priori information
about the underlying program. This additional layer of security is useful in practice, since it is
likely that the obfuscated code will be utilized in a large system, and the system may inadvertently
reveal partial information about the functionality of the code. A formal definition with respect to
dependent auxiliary inputs is given Section 1.2.

In spite of the numerous impossibility results, other works such as Lynn et al. [18] have examined
alternative models of obfuscation, in the hope of achieving meaningful possibility results. Under
the random oracle model of obfuscation, they assume that both the obfuscator and obfuscated code
have access to a public random oracle. Under this assumption, they are able to show that both
point functions and complex access control schemes are obfuscatable. Similar results were obtained
by [6, 9, 22] under a slightly weaker notion of “virtual black box” obfuscation (without random
oracles). For example, Wee showed in [22], that point functions are (weakly) obfuscatable, provided
that strong one-way permutations exist.

In this paper, we introduce a new model of obfuscation, that has wide and meaningful possibility
results, beyond those described above. To demonstrate the utility of this model we show that
Deterministic Finite Automata are securely obfuscatable, provided non-uniformly strong one-way
functions exist. We call this model of obfuscation obfuscation w.r.t. oracle machines.

Unlike the “virtual black box” model of obfuscation where we assume an adversary has full access
to the obfuscated code, we instead consider the case where a small portion of code remains hidden,

and is only accessible via black box. See Figure 1 for an illustration. A compiler in this case takes a
program P and returns two outputs, the obfuscated code O(P) which is given to the adversary, and
a small function/secret which is given to the oracle (i.e. black box). A running of the obfuscated
code takes an input x and computes O(P)(z), via a two-party protocol. To avoid certain trivialities,
we impose restrictions on the oracle’s computational resources. In particular, we will only consider
the case when the oracles resources are asymptotically smaller than the program itself. In practice,
the oracle may be implemented as a small computing device with limited memory resources, such
as a smart card or crypto processor.

1.1 Owur Contribution

We introduce a new model of obfuscation and show that deterministic finite automata are securely
obfuscatable with respect to dependent auxiliary input. Our goal is to develop a scheme that is not
only of theoretical interest, but useful in practice as well. In addition, we also prove several necessary
conditions for obfuscating non-resettable deterministic finite automata. Namely, we show that the
oracle must be read-proof and it’s internal state cannot be static. We extend this model to the
composition setting and show that our techniques remain secure under concurrent self-composition
with adaptive inputs.

1.2 Related work

Obfuscation w.r.t. Auxiliary Inputs. In [16], Goldwasser and Kalai introduced the notion
of obfuscating w.r.t. auziliary inputs. Under this setting the adversary is given some additional
a priori (auxiliary) information in addition to the obfuscated code. They consider two types of
auxiliary inputs in their paper, dependent and independent. For our examination here, we will
only review the dependent case.

Dependent auxiliary input considers the case when the a priori information may depend on
the underlying program. In our context, it may leak partial information about the obfuscated
deterministic finite automata, such as the connection of the first ten states or the number of accept
states the machine has. Whatever the auxiliary information happens to be, it should not provide
the adversary any additional advantage in extracting information from the obfuscated code, then
if that same auxiliary information was available to an adversary with only black box access to the
machine. A formal definition is given below.

Definition 1 (Obfuscation w.r.t. Dependent Auxiliary Input) A probabilistic polynomial
time algorithm O is said to be an obfuscator of the family F = {Fi}ken w.r.t. dependent auzxiliary
wput, if the following three conditions hold:

o (Approximate Functionality) There exists a negligible function p such that for all k and M €
Fr, O(M, 1k) describes an TM that computes the same function as M with probability at least

1— pu(k).

e (Polynomial Slowdown) The description length and running time of O(M,1¥) is at most
polynomial larger than that of M. That is, there exists a polynomial p such that for all k and
M € F., |O(M,1%)| < p(k) and if M takes t time steps on an input x, then O(M,1%) takes
at most p(k +t) time steps on x.

e (Virtual Black Box) For every PPT A, there is a PPT simulator S and a negligible function
v such that, for all k and M € Fj., and every polynomial q with bounded auziliary input z of
size q(k) we have

Pr[A(O(M,1%), 1%, 2) = 1] — Pr[SM(1MI 1k) = 1]| < v(k).

Under the dependent case the authors prove that, if the class of point-filter functions! can be
(weakly) obfuscated w.r.t. dependent auxiliary input, then every class of circuits with super-
polynomial pseudo entropy cannot be (weakly) obfuscated w.r.t. dependent auxiliary input. This
would imply that many cryptographic tasks, such as pseudorandom functions, encryption schemes,
and signature algorithms cannot be obfuscated [16]. Unfortunately, the question of whether point-
filter functions are weakly obfuscatable or not, is still unresolved.

1.3 Notation

We will use the notation PPT to stand for probabilistic polynomial-time Turing machine. If A is
a PPT, B an oracle, and z an input to A, then by A®(z) we mean the algorithm that runs on
input z using oracle access to B. We will often refer to A as a PPT oracle machine. When writing
r < A we mean the value z is returned by A. Additionally, when writing A(1¥) this implies A
is given the value k. In our algorithm descriptions we make use of the statements, return y and
Return z. When using the syntax return, we imply that the value y is returned internally to
the algorithm (such as the output of a function call), while when using Return we imply that the
value z is written to the output tape. As usual we use the notation {0,1}* to denote the set of

all k-bit binary strings, and by z & {0,1}* we mean x is uniformly chosen from {0, 1}*. We also
use the conventional notation of || and @ to denote the string operators concatenate and exclusive
or. Unless explicitly stated otherwise, we will assume all references to log are based 2. A function
i N — RT is said to be negligible, if for any positive polynomial p there exists an integer N
such that for any k > N, p(k) < 1/p(k). We will sometimes use the notation neg(-) to denote an
arbitrary negligible function.

2 Obfuscation with respect to Oracle Machines

In this section we introduce the framework for obfuscating w.r.t. oracle machines. We model obfus-
cation under this new framework as a two-party protocol, where one party represents the obfuscated
code and the other an oracle containing some “small” secret. The communication between the two
parties is characterized using interactive Turing machines introduced by [14]. Under this frame-
work, we assume the adversary has complete control over both the obfuscated code and message
scheduling. We further assume the adversary is malicious, and may deviate from the protocol in
any way. This allows the adversary to adaptively query the oracle with messages of its own choice.
We define an interactive Turing machine as follows.

!The class of point-filter functions AL = {Aﬁ}neN for a language L € NP, is defined as the set of functions
AL = {625 ee(0,137,pe 0,1} Where 85 (w) = (,b) if w is a valid witness to z in Ry and 6,,5(w) = x otherwise.

Interactive Turing Machines. An interactive Turing machine (ITM) is a Turing machine that
has an additional communication tape together with its read-only input tape, read-only random
tape, write-only output tape, and read-and-write work tape. The communication tape consists
of two tapes, a write-only outgoing commumnication tape and a read-only incoming communication
tape. When the incoming and outgoing communication tape of one I'TM is shared with the outgoing
and incoming communication tapes of the other ITM we call this pair an interactive pair of Turing
machines.

We denote a pair of interactive Turing machines M and N as the tuple (M, N). The pair (M, N)
is assumed to be ordered in the sense that at any one time only one Turing machine is active. The
active Turing machine can compute on its internal work tapes, read from its input tapes, write to
its output tape, and send a message to the other Turing machine on its outgoing communication
tape. When one Turing machine has completed its computation, it transfers control over to the
other. This process continues until one machine reaches a halt state.

Informally, we view the oracle as a computationally limited device containing some “small” secret
related to the original program. The oracle’s internal computations are assumed to be hidden, so
that behaviorally, it appears as a black box.

Oracle Model. The obfuscation oracle R is modeled as an interactive Turing machine with one
additional read-and-write tape called internal_state. The tape internal _state has a unique feature
called persistence that distinguishes itself from the other tapes in the oracle. We say a tape is
persistent if the tapes contents are preserved between each successive execution of R. The other
internal working tapes do not share this property and are assumed to be blank after each execution.
Given a particular input and internal_state, the oracle R computes an output (which may be 1) on
its outgoing communication tape along with a new internal state, internal_state’.

(output, internal_state’) « R(input, internal_state)

If R does not have access to a random tape then we say R is deterministic.

Before we finalize the oracle’s computational model, we need to capture the idea of a resource
limited device. This will help clarify our meaning of an oracle maintaining a “small” secret. To
explore this idea more throughly we consider the following two illustrations. In our first example
we examine the case when the internal_state tape is assumed to be very large, so large in fact that
it can store the entire program that is being obfuscated. In this instance, we can create a trivial
obfuscator that loads the entire program into the oracle’s internal_state at setup. This simulates a
true black box and maintains the security properties we are after. However, in practice very large
programs may not physically fit on a device or it may be prohibitively expensive to do so, especially
if the device requires tamper and read-proof protection.

As another example, we consider the parallel case when the input tape is very large. In this case
we can devise a protocol that loads an authenticated-encrypted version of the program onto the
oracle’s work tape (for each input query), which the oracle later decrypts, authenticates, and runs.
Having a large input tape does not make sense in practice, as the input is usually comparatively
smaller than the program size. To avoid these trivialities we consider placing bounds on both the
size of the internal_state and input tape of the oracle. Under this supposition we assume there
exists a polynomial s(-) such that for each k € N, both tapes are polynomial bounded by s(k). In

this framework, we will only consider the non-trivial case when s(k) = o(f(k))?, where the device’s
resources are asymptotically smaller than the program itself. In the special case when s(k) = O(k),
we will say that the oracle maintains a “small” internal state.

Definition 2 (Obfuscation w.r.t. Oracle Machines) A probabilistic polynomial time algorithm
O and oracle R is said to be an obfuscator of the family F = {Fi}ren w.r.t. polynomial time-
bounded oracle machines, if the following three conditions hold:

o (Approzimate Functionality) There exists a negligible function u such that for all k and M €
Fi, OR(M,1%) describes an ITM that computes the same function as M with probability at
least 1 — p(k).

e (Polynomial Slowdown) The description length and running time of O®(M,1%) is at most
polynomial larger than that of M. That is, there exists a polynomial p such that for all k and
M € Fy, |O(M,1%)| < p(k) and if M takes t time steps on an input =, then OR (M, 1*) takes
at most p(k +t) time steps on x.

o (Virtual Black Box) For every PPT A, there is a PPT simulator S and a negligible function
v such that, for all k and M € Fy, and every polynomial q with bounded auxiliary input z of
size q(k), we have

Pr[AR(OR(M,1%),1%, 2) = 1] — Pr[SM (M 1 2) = 1]| < w(k).

For convenience, when our family F is a family of Turing machines, we will adopt the convention
that each program is represented by it’s binary string encoding, for some fixed polynomial time
universal Turing machine. Therefore, the size of each Turing machine is measured as the size of
it’s binary string representation.

Before moving onto the next section we review the definition of non-uniformly strong one-way
functions. Under the assumption they exist, we prove deterministic finite automata are obfuscatable
under Definition 2.

Definition 3 (Non-Uniformly Strong One-Way Functions): A polynomial-time computable
function f:{0,1}* — {0,1}* is called non-uniformly strong one-way if for every non-uniform PPT
A there is a negligible function neg(-) such that for sufficiently large k,

P [T (@) 3y — A(f(2),19)] < neg(k).
z<{0,1}k

2.1 Non-Resettable Deterministic Finite Automata

We define a Deterministic Finite Automaton (DFA) as a machine ¥ = (Q, X, , sp, G) with a finite
set of states @, finite alphabet X, transition function ¢, initial state sy €), and accepting states
G. The structure of the DFA is determined by its transition function &, which maps each state and

a given input symbol to a new state. The output function (which imitates black box behavior) of

the DFA WV is defined as (5.0)
1 ifié(s,a) G
(s,) = { 0 ifd(s,a) ¢ G

2The size of each M € F}, is polynomial bounded by f(k).

where the “user” selectable input is « and s is the current “internal” state. We note that the user
does not have control of the state input. Rather ¥ must internally maintain the state over each
execution. We will often just write ¥(a).

When modeling DFAs, it is often convenient (unless stated otherwise) to assign a reset capability,
which allows the DFA to transition back to its initial state. In practice having a reset capability
is not always a desired characteristic, especially when developing software use control applications,
such as subscription policies and digital rights management. To differentiate between DFA’s that
have a reset capability and those that don’t we define a non-resettable DFA to be a deterministic
finite automaton that is not resettable. We note that we can always build in resettability if we add
an additional reset symbol to every state.

A topic of related interest that has been actively studied over the years has been on the problem
of developing efficient learning algorithms. A learning algorithm takes a given input-output sample
(i.e. transcript) and tries to construct a DFA that is consistent with this sample. Finding a
minimum-state DFA that is consistent for a given sample was shown by Gold [11] to be NP-
Hard. This holds for any passively observable learning algorithm of an unknown DFA (with a
particular representation). Angulin extends this result and shows that active learning that allows
user selectable inputs, is equally hard [1]. Specifically, one can construct a family of DFAs that
cannot be learned in less than exponential time. A common interest to this line of work has
examined the relationship of resettability and learning. Non-resettability under certain frameworks
can sometimes lead to efficient learning algorithms [20]. In general though, learning non-resettable
DFAs is a much more difficult problem.

2.2 Necessary Conditions for Obfuscating a DFA

In this section we develop several necessary conditions for securely obfuscating a non-resettable
DFA. In particular, we show that obfuscation is only feasible provided that the oracle’s internal
state is both read-proof and non-static. To facilitate the proof in Proposition 1 we begin by
constructing a family of non-resettable DFA’s that are hard to characterize given only black box
access, yet easy given some additional power, such as reset. We define the family of non-resettable
DFA’s U, ;, i,j € {0,1} to be the set of machines with the following characteristics: @ = {0, 1,2},
|¥| > 2, initial state 0, accept states G; ; = {1 iff i = 1,2 iff j = 1}, and transition function

0 ifg=0and A € ¥ —{a, 5}
g, A):==¢ 1 if(¢g=0and A\=a)org=1
2 if(g=0and A\ =pf) or g =2.

The family described above branches into two distinct states, depending on whether the first input
symbol is « or (. Clearly, one can learn the DFA’s full description if resets are allowed. We exploit
this simple observation in the following result.

Proposition 1 If non-resettable DFAs are obfuscatable w.r.t. oracle machines then the following
conditions must hold:

(1) The oracle’s internal state tape cannot be static.

(2) The oracle must be read-proof.

Proof: For the first condition we let O be any secure non-resettable DFA obfuscator. We show
that having a static internal state gives the adversary a non-negligible advantage. Suppose |%| > 2
and consider the non-resettable DFA’s W; ; described above with alphabet symbols a, 8 € ¥. Since
O is a secure obfuscator we must have for every PPT A and auxiliary input z, the existence of a
PPT simulator S satisfying

PrlAR(OR(My, ;, 1%), 1%, 2) = 1] — Pr[s™ves (1Ml 1% 2) = 1]| < (k)

Let A be the adversary that takes the original obfuscated code O(¥; ;), stores a copy C «— O(¥; ;)
and runs i +— C(a) and j «+ C™(3). The distinguishing bit returned by A is b « i @ j. Now since

1—Pr[8%s (1Mvis] 1F 2y = 1] < w(k) fori#j

and
Pr[S¥ii (1Mvisl 1%) = 1) < w(k) fori=j

we must have)
L-v(k) <5 ZPr[S‘I’w(ﬂM%', 1, 2) = 1]
i#]
and)
L3 P e 16, 2) = 1) < ().
i=j

But the following equality

Soprfs Ml 1k 2y = 1] = 3" Prfg Ve (1M 18, 2) = 1
i i=j

implies 1/2 < v(k) for k sufficiently large, contradicting our assumption that v is negligible.

For the second condition we assume the oracle is not read-proof which implies the entire internal
state can be extracted. Therefore the adversary can simulate an exact copy of the oracle on its
own. Using the same arguments above we reach a contradiction. 0O

Based on the above result, it easily follows that non-resettable DFAs are not obfuscatable under
the “virtual black box” model and random oracle model of obfuscation. In order to get non-
resettability, other models of obfuscation need to be considered.

3 DFA Obfuscation

Following the framework described in Section 2 we show how to construct a DFA obfuscator that
is secure with respect to dependent auxiliary inputs. Our goal is to develop a compact, yet very
efficient DFA obfuscator that is not only of theoretical interest, but useful in practice as well. To
obtain our results we use a simple authenticated-encryption scheme to hide the structure of the
DFA and authenticate the execution of the protocol. As noted earlier we view a Turing machine
as a program running on a universal TM. Therefore when describing our DFA representations we
will informally write their descriptions as pseudocode.

Representation. We model each DFA ¥ as a polynomial-time Turing machine My with an addi-
tional persistent read-and-write tape, called internal_state. The internal_state maintains a record of
the values needed to compute the DFA, such as the DFA’s current state. Each My is represented
by a table where, V a € X, V s € @ there is a table entry containing «, s, §(s,«), and acpt (which
equals 1 iff §(s,a) € G). Without any loss of functionality, we compress the table by employing an
injective map that encodes each a € ¥ to a string in {0, 1}“0g %11, Using the table described we can
create a program My that simulates W’s output behavior. The program consists of the DFA table,
high-level code, and two persistent variables current_state and current_acpt. The high-level code
describes the programming language used, table lookup algorithm, alphabet X, and function calls
that manipulate the persistent variables. The program My works as follows: On user input «, the
table lookup algorithm searches “each” table entry for the pair «, current_state. If a match is found
the acpt bit is updated and &(current_state, o) is recorded temporarily. The program continues to
search the rest of the table for a match. At the end of the table search the user is given the recorded
acpt bit, and the variable current_state < 0(current_state,«) is updated. After the acpt bit has
been returned the DFA is ready to accept its next input.

Following this description, our next goal is to define an encoding scheme of My. Our choice of
encoding is important for several reasons. First, it allows us to calculate the size of |My|, which is
needed for evaluating the polynomial slowdown property. And second, depending on our choice of
encoding, the size of |[My| may drastically affect the simulator’s ability to simulate the obfuscated
code. We formalize our encoding scheme as follows.

Encoding. We begin our encoding by splitting up the description of My into it’s individual com-
ponents: high-level code and DFA table (which is further broken down by individual table entries).
We create a parsing scheme that takes the bit description of each component and adds a trailing bit
of a 1 or 0 to the end of each individual bit. The trailing bit allows the parser to recognize the end
of a component’s description. For example if the high-level code has a bit description hg ... h,, then
its new bit description is hg0h10... h,,1. Adopting this encoding scheme, we can find a t > 0 such
that the size of each table entry satisfies 2! < |table entry| < 211, Given ¢, we pad each table entry
with the string 00...01 (which is a multiple of two) until it’s length is exactly 2*1. If the number
of tables entries is even, we pad the last table entry with an additional 2/ bits of the form 00. .. 01
and add a single 1 bit value on the end. If on the other hand the number of table entries is already
odd, then we do nothing. For convenience we denote the number of edges in ¥ as |E(¥)|. By pre-
fixing the parser to the encoded My, it follows that |My| = |Parser| 4+ |High-level code| + |Table|,
where |Table| = 2/+1|E ()] if the number of table entries is odd and 2!7!(|E(¥)| 4+ 1) + 1 if the
number of table entries is even.

Since both the size of the parser and the high-level code are public, it follows that knowing the
size of |Myg| implies that one also knows the size of |Table|. But one can efficiently extract the
number of edges |E(V)| based on our encoding above. We use this deduction later in the proof of
Proposition 2 to swap the simulator’s input 11Mel with 11291,

Based on the encoding above, we define the family Fppa := {F }ren to be the set of all polyno-
mial bounded My satisfying

Fi = {My | |My| < f(k) and 2log |States(¥)| + log|3| +1 < k}3

3The condition 2log |States(¥)| +log |Z| 4+ 1 < k may be removed by modifying the encryption scheme in Figure 3

Setup(My, k):
INPUT: My, 1%

KEY GENERATION:
K — K(k)

GENERATE STATE TABLE:

STATETABLE(Y) :

s—0

[m|* — [log, |Z]] + 2[log, |Q] + 1

for state — 0 to |Q| — 1 do

for symbol — 0 to |X| —1 do

Sa < Usymbol
Sstate < State
S§(state,a) 5(state, asymbol)
Sacpt < 1 S5(state,a) € G, 0 else
T:tate [S] —

SallSstate ||56(state,a) | acpt ||Ok7‘m|*

s«—s+1
| Table|* — s
return (|m|*7 |Table|*7thate)

ENCRYPT STATE TABLE ENTRIES:
SFK (T:tate) :
X1 — lk
Auth +— FK (Xl)
for s — 0 to |Table|* — 1 do
XO — S”O
Y — Fr(Xo)
Te 8] < Y & Tstatels]
X1 — Auth & T [s]
Auth «— FK (Xl)
Auth* «— Auth
return T || Auth*

Return (K, |m|*, | Table|*, T¢, Auth®)

Algorithm O(| Table|*, T, Auth*):

INPUT: |Table|*, T¢., Auth*

INITIALIZATION:
| Table| «— | Table|*
Tc — T*C
Auth «— Auth*
State +— Transition_Query

STATE TRANSITIONS:
Case(State)

Transition_Query:
a «— scan_input
Query oracle R with «
State «+— State_Update

State_Update:
for s — 0 to |Table| — 1 do
if s # | Table| — 1 then
Query oracle R with T¢[s]
if s = |Table] — 1 then

Query oracle R with T¢[s]||Auth

if acpt =R

Return acpt

State «— Transition_Query
if auth_fail <R

State «— Transition_Query

Figure 2: Algorithm Setup and O.

for some fixed polynomial f(k). The parameter k is called the security parameter.

Obfuscation. To simplify our description of the DFA obfuscator we split up the obfuscation into
three separate algorithms, Setup, O, and R. The Setup algorithm, shown in Figure 2, takes a
DFA encoding Mg and generates inputs for both the obfuscated code and oracle. Without loss of
generality we view our encoding of My to be the DFA state transition table of W. The parsing
operation and high-level code was left out for simplicity.

to have more than one call to Fx per table entry. This is a relatively easy fix since we need at most m = [(2¢tlog(ck)+
1)/k] constant calls to Fi given |My| < f(k) < ck' some fixed c,t > 0. This condition was added to simplify the
obfuscation algorithm.

10

Algorithm R(K, |m|*, | Table|*): STATE AUTHENTICATION:

X1 — Auth’ @ T¢|s]

Auth’ — Fg(X71)

if s =|Table|] — 1 and Auth’ # Auth
then
Return auth_fail
State «+— Transition_Query

INPUT: K, |m|*,|Table|*

INITIALIZATION:
| Table| «— | Table|*
Im| — [m/[*

acpt — L

currezzt_state <0 COMPARE TABLE ENTRIES:
Auth’ — L

" N XQ — S”O

emp,, < i Y — Fr(Xo)

temp s — M, — Y ®Tcls]

s+— L

Salls s S — Mg 10—
State «— Transition_Query allsstatel|ss(state e | Sacpt slk=1:k=[m|]

if Sstate = current_state and s, = temp,,
then

temp ., — S§(state,a)
ant Sacpt

STATE TRANSITIONS:
Case(State)

Transition_Query:
On query a do

UPDATE ORACLE STATE & COUNTER:
temp,, — «

if s = |Table] — 1 then

50

X, — 1% current_state < temp
Auth’ — Fr(Xy) Return acpt

State +— State_Update State «+— Transition_Query

s—s+1
State_Update:

On query T¢[s] or T¢ls]|Auth do

Figure 3: Oracle R.

The obfuscated code O, also shown in Figure 2, can be described as a protocol template. The
template takes as input the encrypted table T¢, authentication tag Auth, and table size |Table]
returned by the Setup algorithm. During the Transition_Query phase the obfuscated code scans
in the user’s input «, queries the oracle R, and enters a new phase called State_Update. During
State_Update the obfuscated code submits the table T along with the authentication tag Auth.
The oracle processes T¢ one table entry at a time and verifies the table’s integrity. If the authen-
tication passes, the oracle returns an accept value corresponding to whether the new state is an
accept state.

The oracle R, shown in Figure 3, describes the oracle’s behavior. Just like the obfuscated code
O, the oracle is nothing more than a protocol with a symmetric key and a few additional variables.
Other than the padding length |m/|, table size | Table|, and current_state, the oracle maintains no
other information about the DFA.

Proposition 2 If non-uniformly strong one-way functions ewist, then non-resettable DFAs are
obfuscatable with respect to oracle machines.

Proof: Let f(k) be some positive polynomial and consider the family Fppa defined over f(k).
We will assume without loss of generality for the remainder of the proof that k is sufficiently large
so that the inequality 2log|States(¥)| 4 log |X| + 1 < k is satisfied for every My € Fj. This

11

assumption follows from the fact that every My € Fj is polynomial bounded and therefore there
exists a fixed t > 0 with |My| < k! for every k sufficiently large. Thus |States(W¥)||X| < |[My| < k
implies log | States(¥)| + log |X| < tlog k whence 2log |States(V)| +log || +1 < 2tlogk+ 1 < k for
k sufficiently large. This last restriction was added to guarantee that the size of each table entry is
no larger than the size of the pseudorandom function’s output.

To prove that the obfuscator in Figure 2 and 3 obfuscates non-resettable DFAs we need to show
that the aforementioned three conditions hold: Approzimate Functionality, Polynomial Slowdown,
and Virtual Black Boz.

Approzimate Functionality: There are only two states in which the oracle may be in at any one
time. In the first state Transition_Query, the user submits a transition symbol to the oracle
which the oracle internally stores on its internal state tape. After this value has been written, the
oracle’s state is updated to its second state, called State_Update. In State_Update the user
transmits the encrypted table to the oracle (from top to bottom). The oracle checks the ciphertext
integrity in each table entry and compares the underlying plaintext with the current state and
stored transition symbol. If a match occurs the oracle stores the new transition state and accept
bit in its internal state. Provided that the protocol has been executed faithfully the oracle will
return the acpt bit on the last query. After this stage has been completed the oracle reverts back
to its Transition_Query state and this cycle repeats indefinitely. Given this short description, it
is not difficult to verify that the obfuscated DFA computes the original DFA with a probability of
1.

Polynomial Slowdown: In order to show that the obfuscator satisfies polynomial slowdown we
must prove there exists a polynomial p satisfying: for all £ and Mg € Fj the description length
|O(My, 1%)| < p(k) and if My takes t time steps on an input then O®(My, 1¥) takes at most
p(k + t) time steps on x. We do this by constructing two polynomials, one that bounds the
description size of the obfuscated code and the other bounding the number of steps. We then
construct a suitable polynomial from both of these that satisfies the above requirement.

Observe that the size of the obfuscated code is asymptotically bounded above by |O(Mgy, 1¥)| =
O(|High-level Code| + k|E(W)|). Since My € Fj, we must have |E(V)| < |[Mg| < f(k). But this
implies |O(Mgy,1¥)| = O(kf(k)) and hence the description length is polynomial bounded. For
the time complexity, observe that the string comparisons for each table entry under My’s takes
at least [log|X|] + [log|States(¥)|] > log |E(¥)| steps. Since this operation is repeated |E(V)]
times it follows that the total number of steps needed to compute My on any input is at least ¢ >
|E(¥)|log |[E(¥)|. On the other hand the number of steps needed for OR(My, 1¥) to send the table
to the oracle is at most O(k|E(¥)|log |E(¥)]), while the oracle which is polynomial time computable
takes at most ¢(k) polynomial number of steps per query. Therefore the total number of steps taken
on any input (including the number of steps for the oracle) is at most O(k q(k)|E(V)|log |E(V))]).
Without loss of generality we may assume that both polynomials f(k) and ¢(k) absorb the constants
for the asymptotic bounds of the description length and time complexity. Therefore we can find a
suitable n, ¢ > 0 such that for all k, max{f(k),q(k)} < ck™. We claim that p(k) := ck™*? satisfies
the polynomial slowdown requirement. This is clear since the description length |O(Mg,1%)| <
kf(k) < ck™? and the time complexity of O (My, 1¥) is at most k q(k)|E(¥)|log |E(¥)| < c(k +
t)"*+2. Therefore our claim follows.

Virtual Black Boz: To simplify the notation in the proof we omit the input 1¥. We also replace the
simulator input 1M#! with 1MW) which can be extracted (based on our encoding of My). This
reduces the virtual black box inequality to Equation (1).

12

We begin our analysis by breaking up Equation (1) into four separate problems, each problem
representing the indistinguishability of obfuscating with different oracles. Other than the first
oracle Rp, we do not place any computational assumptions on the others. This allows them to
maintain a much larger internal state.

Pr[ARF K (ORFk (W), 2) = 1] — Pr[SY(1IEMW 2) = 1] (1)
< |Pr[ARFx (OR7x (0), 2) = 1] — Pr[ARrun (ORrun (@), 2) = 1]| (2)
o+ [PriARe (ORron (W), 2) = 1] = Pr[ARue (ORbn (W), 2) = 1] (3)
o+ [Pr{AREn (ORiun (9), 2) = 1] = Pr{ARiana (ORfowa (9), 2) = 1]] (4)
(

In Equation (2) we introduce the oracle Rpy, in order to measure the pseudorandomness of
Rry- Both Rpun and Rp, have the same description, except every call to F in R, is replaced
with a similar call to a random function (independent of z) with the same input and output size.
For convenience we refer to this random function as Fun. Using algorithms £ and V shown in
Figure 9 (with the IV’s removed), we can reduce the distinguishability of Equation (2) to the
distinguishability of the pair of oracles (£f,,Vr,) and (Epun, Vrun). We base this reduction on
adversary B4 ¢ given in Figure 4.

In our description of B4 ¢ we use the parameter ¥ to indicate the hardwiring of B’s oracle query
to £ (which is dependent on STATETABLE(V)). B4 v uses E’s response to construct the obfuscated
code which is given to A. Using A, B4 v simulates A’s query-response interaction with the oracle.
The distinguishing bit b returned by B4 g is the same bit returned by A. Therefore Equation (6)
reduces to Equation (7). If we replace every oracle call to £ and V with multiple calls to either
Fy or Fun then we can reduce Equation (7) even further. We denote this simulation by B g’ to
distinguish itself from B4 y. Therefore Equation (7) reduces to Equation (8). But this last equation
is just the pseudorandom distinguishability of Fx given auxiliary input z. Using our assumption
that non-uniformly strong one-way functions exist we can use the Goldreich et al. construction
in [12] to generate a pseudorandom function that is secure against non-uniform PPT adversaries.
If the adversary A makes no more than g, distinct* State_Update queries, then the total number
of queries made to F or Fun by B4 ¢’ is no more than (¢, +2)|E(¥)|+ 1. Therefore Equation (6)
reduces to Equation (10) which is negligible following our assumption.

‘Pr[ARFK (ORFK (W), 2) = 1] — Pr[ARran (ORrun (@) 2) = 1] (6)
= [PelBE " (2) = 1) = Pe{BEy Y (o) = 1] (7)
= [PrBYY (2) = 1] - Pr(BES () = 1)) (8)
= Adviy (K 2))
< AdVEF(k, (g, +2) [E(D)| +1). (10)

For Equation (3) we would like to perform a similar reduction as we did in Equation (8) except
instead of measuring the pseudorandomness of Fi we would like to measure the unforgeability

‘Fach ¢, represents a complete chain of State_Update queries (i.e. the user has submitted the entire encrypted
table with Auth tag).

13

Setup of B4 y:
InpUT: 1%, 2

(GENERATE STATE TABLE:
(Im|,| Table|, Tytate) « STATETABLE(Y)

ENCRYPT STATE TABLE ENTRIES:
Query oracle & with Ty
(Tc, Auth) = 5(T5mte)

A <= O(| Table|, T, Auth), z

Simulation of Oracle R:

InpuT: 1%, |ml|,| Table|, Tstate, Te, Auth

INITIALIZATION:
current_state < 0
acpt — L
temp, «— L
temp,, — L

ﬂa’gauth —1
C—1

s— L
State «— Transition_Query

Case(State)
Transition_Query:
When A makes a query a do
temp, — «
fl0g gy, +— false
C— 1
s+ 0
State «+— State_Update

State_Update:
When A makes a query Ty [s] or
T [s]||Auth’ do

STATE AUTHENTICATION:
C — C|Tys]
if T, [s] # T¢[s] or (s = |Table] — 1 and
Auth’ # Auth) then
if s = |Table| — 1 and flag,,,,;, = true then
Query oracle V with (C, Auth)
if 0 <= V(C, Auth) then
A < auth_fail
State «— Transition_Query

COMPARE TABLE ENTRIES:
M — Tec[s] ® (Tels] @ Tstate(s])
SaHSstateHsé(state,a)||Sacpt — Mé[kfl:kfhn\]
if sstate = current_state and s, = temp,,
then

tempcs < S§(state,a)
acpt < Sacpt

UPDATE ORACLE STATE:
if s = | Table| — 1 then
current_state < temp .
A <= acpt
State «— Transition_Query
s—s+1

Figure 4: Adversary Ba v.

provided by the verifier V. To do this we introduce the oracle Ry, . Internally the oracle Rf,,,, looks
identical to Rpun except during the state authentication process. Instead of computing a partial
authentication tag for each State_Update query as is done in Figure 3, it instead collectively
gathers all of the ciphertext queries and final authentication tag and submits them to a verifier
V*. To do this, R, stores the values (T¢, Auth) returned by the initial Setup(My, k) algorithm.
During the State_Update phase the oracle checks if the table entries queried by the user are the
same entries as those in T¢. If any of the table entries are incorrect including the final authentication
tag or if they are queried in a different order, the oracle Ry, returns auth_fail. This is equivalent
to querying V*,

1« V*(C||Auth) iff C|Auth was a response of £,0 else.

where C' is the concatenation of the queried table entries. Reusing B4 w we can reduce Equation (3)
to inequality (11) by simulating the distinguishability with oracles (Epun, Viun) and (Epun, V*). We

14

Setup of (Ba,w)p:

ENCRYPT STATE TABLE ENTRIES:
When B, v makes a query M to oracle Epy, do
(C, Auth) «— Epun(M)
Baw < (C, Auth)

Simulation of Oracle R:

STATE AUTHENTICATION:
for i — 1 to ¢, do
When By g makes a query (C’, Auth’) to oracle (Vpy, or V*) do
if (C', Auth’) # (C, Auth) then
BA7\1; <=0

else Byy <1

bV« BA,\I/

Return o/

Figure 5: Adversary (Ba,w)p

call this advantage IND-VERF, since it measures the indistinguishability between the two verifiers.
Therefore

[Pr{AR (OR5en(9), 2) = 1] = Pr[ARbwn (O%Fwn (0), 2) = 1]
- (pr[BﬁfgpanFun(z) =1] - Pe[BYyY (2) = 1]\
= Advg‘lg;ifBqu, (5, Ges Qo Nes Moy 2)- (11)

with ¢. = 1 denoting the number of encryption queries and 7, = 1, — 1 = |E(¥)| the maximum
number of k-bit blocks each encryption or verification query may have. We claim this advantage is
bounded above by the INT-CTXT-m security of S€pu. See Appendix A.1 for more details on the
security definition of INT-CTXT-m.

. ind-verf int-ctxt-
Clalm 1 Advg'lgFZiI;BA,\I, (kaqeaqvane7nv7z) S Adv?é;;:f(rélA,\P)ctxt (k7q67Q1)7776777v72)

Proof: We will assume throughout the rest of this claim that ¢ = 1 and 7. = n, — 1 = |E(¥)].
To simplify the notation we omit writing the variables g., 7., and 7,. Let E be the event (over
the randomness of Fun and A) that B4y submits at least one ciphertext authentication pair that
passes verification (after at most ¢, distinct State_Update queries) and was never a response from
Erun. In Figure 5 we define a new adversary (B4 w), that simulates B4 ¢’s interaction with the
verifier V*. Given the event E it follows that both (B A,w)p and By g return the same distinguishing
bit o’. Therefore

Prb=b « Boy AE] =Pr[b=V — By | E] - Pr[E]
=Pr[b=V < (Baw), | E]-Pr[E]
< Pr[b= b — (BA,\I/)p]

1 ind-ver 1
= EAdVS(gFumgBA,\I/)p(k’ qu, Z) + 5

15

But Adv?g;ir’%BA&)p (k, gy, z) must be equal to Pr[BiF’t'I,"’V*(z) =1] - Pr[Bift'I,“’v*(z) = 1]| which

is 0. Hence

1 , 1
§Advglg;§jf§9/w(k, Gu:2) + 5 = Pr(b=1b « By
=Pr[b=b — Byy AE]+Pr[b=V « Bay AE]

<Pr[E]+Pr[b=V « (Baw)]

1 1 indov 1
- §PY[E [6=0]+ §AdvglgFuiriBA,w)p(k’ Go:2) + 2

1 intectsct 1
= §Advg12;$nf(gx4,\ll)ctxt(k’ qU’ Z) + 5

and our claim follows. O

Now that we have bounded Equation (3) by the INT-CTXT-m security of SEpy, we are now
ready to move onto Equation (4).

In Equation (4) we measure the chosen plaintext distinguishability between encrypting with
either Epyn or ERand, Where Erana(M) is a random string of length [M|. The oracles Ry, 4 and
Ry, are identical except for their calls to Epun Or Erana. As before we will use the * in Ry, 4
to denote that verifier V* is used. We define BZ,‘P to be the algorithm B, g that uses V* as its
verifier (which can be easily simulated given the output of £). Therefore Equation (4) reduces to
inequality (12)

Pr| ARFM(@REU“(@), z) =1] — Pr| AREand(oRﬁwd(qz), z) =1]

= [PrB3 (2) = 1] = Pr{B g (2) = 1]

ind$-
- Adv?gFuiI?227W (ky Qe Me, 2). (12)

with g = 1 and 7. = |E(V)|.

In the final Equation (5) we introduce the simulator S, which as you recall only has black box
access to ¥. In order for S to properly simulate A’s view it needs to know the number of edges
|E(¥)|. This as you recall can be easily extracted knowing just the size of My based on our
encoding. Given the number of edges |E(W¥)|, S can easily simulate A’s view of the obfuscated code
by giving A a copy of O(|E(¥)|, T¢, Auth), where T¢ is a random table of the appropriate size
(dependent on |E (V)| and k) and Auth a k-bit random string. Using its oracle access to ¥, S can
simulate A’s interaction with R, 4 using the values |E(V)|, T¢, and Auth. Therefore the entire
simulation, which we denote by Sy, consists of passing A the obfuscated code O(|E(V)|, T¢, Auth)
and simulating the interaction between Ry, 4 and A using oracle W. The full description of
simulator S4 is given in Figure 6.

To help with the analysis we model adversary ARkana(ORRana (W), 2) as we did in Equation (4) by
replacing it with Bzgq‘?a“d (2). From this we have Pr[ARRrana (ORRana (¥),2) = 1] = Pr[Bzg\If}a“d(z) =
1]. Notice that during the State_Update phase of B in order for the final quer}’f to reach
UPDATE ORACLE STATE and return an output other than auth_fail, Ry, q must pass the verifier
V*. This implies that the adversary submits the table T¢ free of modifications and in the exact
order. Hence the operations under COMPARE TABLE ENTRIES may be completely replaced with a
simulated oracle call to the DFA in much the same way simulator S4 does. Replacing this code, we

16

Setup of Sj4:
INpUT: 1F, 1B
(GENERATE STATE TABLE:

for s — 0 to |[E(V)|—1 do
Tstate[s] — Ok

Query Erand With Tyaze
(T07 AUth) ~ gRand (Tstate)
A < O(|E(W)|, Te, Auth), =

Simulation of Oracle Ry, ,.4¢

INpPUT: |E(T)|, Te, Auth

INITIALIZATION:
acpt «— L
temp, «— L

ﬂagauth —1
C— L

s— L
State «— Transition_Query

Case(State)
Transition_Query:
When A makes a query o do
temp, — «
110G gy, — false
C—1
s+ 0
State +— State_Update

ENCRYPT STATE TABLE ENTRIES:

State_Update:
When A makes a query Ty [s] or
T [s]||Auth’ do

STATE AUTHENTICATION:
C — C|Tys]
if T, [s] # Tc[s] or (s = |E(¥)| — 1 and
Auth’ # Auth) then
if s =|E(V)| -1 and flag ,,;;, = true then
Query V* with (C, Auth)
if 0 < V*(C, Auth) then
A < auth_fail
State «— Transition_Query

QUERY DFA ORACLE:
if s = |E(¥)| — 1 then
Query oracle ¥ with temp,,
acpt «— ¥(temp,,)

UPDATE ORACLE STATE:
if s=|E(V)| —1 then
A < acpt
State «— Transition_Query
s—s5+1

Figure 6: Simulator Sy.

obtain a new Bz’\l,' which is functionally equivalent to B} - Since the variables current_state and
temp ., are no longer needed, as they are used in the simulation of oracle ¥ we can remove them.
Finally observe that an oracle call to Egand in ENCRYPT STATE TABLE ENTRIES returns random
strings regardless of the particular input. Therefore encrypting with the real state table T4 Or
one containing all zeroes provides a random output that is of the same size. Hence it follows BZAI/,
and S4 have a distinguishability of 0. Thus

[Pr{ARwse (ORiwna (W), 2) = 1] = Pr[SE (117 2) = 1]

 [Pr{Bi(e) = 1 - PrlSEE,) = 1
=0.

Using the bounds derived in Appendix A with ¢ = 1 and 7. = 7, — 1 = |E(¥)| we have the

17

following result
Pr[ARFx (ORFx (W), z) = 1] — Pr[SY (AP 2) = 1] (13)
< AdVR™ (K, (o + 2)[E(D)| + 1)

int-ctxt- ind$-
+Adv?§;§:}(g&¢)ctxt (s Ges Gus Nes vy 2) + AdV?gFui?gz v (k. e nes 2)

< AdvEIM(k, (qu + 2)[E(T)] + 1)
(B + B2 + S@IEW)P + B2
(|

Corollary 1 If non-uniformly strong one-way functions exist, then non-resettable DFA’s are ob-
fuscatable with respect to oracles with small internal state.

Proof: In Proposition 2 we used the Goldreich et al. construction in [12] to generate a pseudo-
random function that is secure against non-uniform PPT adversaries. The key generated for this
constriction is the same size as the security parameter k. But this implies that the size of the ora-
cle’s internal state is no more than O(log |State(V)| 4 log |X| + k) = O(k) following our definition
of Fj. 0

3.1 Composition of Obfuscations

So far, we have looked at the case of DFA obfuscation in a stand-alone setting, where the obfuscated
code is operating in isolation. Suppose now we allow multiple obfuscations to execute alongside
one another, all sharing the same oracle as shown in Figure 7. If we compose obfuscations in such
a manner, is the resulting scheme any less secure? That is, does running multiple obfuscations
provide any more information that couldn’t otherwise be efficiently extracted by running their
black boxes? Using a simple modification to the obfuscation algorithm presented earlier, we show
that it is possible to securely compose obfuscations in this manner.

We model the composed DFA obfuscations as a system of ITMs whose communication tapes are
connected via a polynomial time computable control function. The control function interfaces with
the oracle’s input and output communication tapes and delegates the order in which messages are
sent to the oracle. In practice, the control function may implement a quality of service scheduling
algorithm that gives certain DFA’s a higher priority over others.

The notion of composition we use here is similar in flavor to the one used in secure multi-party
protocols. While we don’t completely generalize our security claims to the protocol framework,
which includes an environment distinguisher that distinguishes between a real protocol execution
from an simulated ideal process (i.e. black box access), the proofs can be modified to this case (since
all of the reductions use the adversary as an oracle). Unfortunately even with these modifications,
general composition cannot be maintained because a symmetric key is used. Our composition
assumptions are stated below. For a more thorough introduction to the taxonomy of composition
see [8].

Concurrent Composition. Any interleaving of messages to the oracle is allowed. Multiple DFA

executions operate independently of one another and submit messages to the oracle at their
own discretion.

18

Obfuscated
Code

Obfuscated
Code

Obfuscated
Code

Communication
Links

Oracle

Figure 7: Composition of obfuscations w.r.t. single oracle

Adaptively Chosen Inputs. The inputs into each DFA execution are determined adaptively
by the environment. No assumptions are placed on the inputs other than that they belong
to the alphabet .

Self-composition. The number of DFA executions is fixed in advance, but may be chosen
arbitrarily from the same family Fj, for a given security parameter k.

Using the definitions above we now present the main composition result.

Proposition 3 If non-uniformly strong one-way functions exist, then there exists a DFA obfuscator
that remains secure under concurrent self-composition with adaptively chosen inputs.

Proof: The DFA obfuscator used in Proposition 2 can easily be modified to account for com-
position. Let {My,}i=1,.+ be a finite family of DFA’s in Fj, with the same encoding scheme as
described in Section 3. Our goal is to show that the following inequality is negligible

[Pr[ARrx (ORFk (U), ..., 07k (1y), 2) = 1]
—Pr[8¥r- e (B B oy = 1] (14)
To make sure the messages sent between the oracle and the obfuscated DFAs are properly routed
we assign a unique ID to each of them. This allows the oracle to distinguish the messages sent

from each party. The following changes were made to the obfuscation algorithms Setup, O, and R
in Figure 2:

e Setup(My,,...,My,, k)

— The scheme £r, under ENCRYPT STATE TABLE ENTRIES is replaced with the encryption
scheme in Figure 9.

— A unique ID; is assigned to each My,, corresponding to the IV used for encryption.

o O(ID;,|Table|;, T¢ ;, Authy),i=1,...,t

19

— All communications are prefixed with the DFA’s unique ID.

— If a message is received with an ID different than it’s own, it is ignored.

e R(K,IDy,|m|},|Table|},...,ID¢,|ml;,| Table|;)

Each O(ID;, | Table[}, T, ;, Authy) is assigned it’s own set of variables | Table|rp,, |m|ip,,
acptp,, current_statep,, Auth’IDi, tempy, 1p,s temp.s ip,, Sip,, and Statep, .

All outgoing messages are prefixed with the input message ID.
— If an incoming message uses an unrecognized ID, an ID||invalid_id message is returned.

— The assignment of X; under Transition_Query is changed to X; « ID|[1%~1/Pl,
|ID| < k.

The assignment of Xy under COMPARE TABLE ENTRIES is changed to Xy < ID||s||0.

We begin our analysis by breaking up inequality (14) into four separate problems in much the
same way as we did in Proposition 2. The oracles Rpun, Ry, and Ry, 4 are reused with the
above ID modifications. Since obfuscations may operate concurrently we must show that this
additional capability does not give an adversary a non-negligible advantage. In our particular case
concurrency only implies messages are interleaved, since a single oracle can only process messages
sequentially. In Proposition 2 the adversary B4 g in Figure 4 was able to assemble a chain of
State_Update queries to construct a single verification query. This was easily achieved since only
one DFA obfuscation was communicating with the oracle at a time. We would like to use this same
basic idea to help us here, unfortunately things are a little more complicated since messages are
now interleaved. To mitigate this issue we create an adversary A’ (using A as a subprotocol) that
untangles the messages and resubmits them to the oracle in an orderly fashion. A description of
adversary A’ is given in Figure 8.

Since A only receives an output message from the oracle when an obfuscated DFA has submitted
its final State_Update query, we can simulate the oracle’s output by holding back all of A’s queries
until a complete chain of State_Update queries have been submitted. Therefore we can untangle
A’s queries and resubmit them in the following order (Transition_Query D State_Update IDil)

, .., (Transition_Query]Dim,State_Update IDim)‘r’. Hence it follows that

Pr[ARFx (ORFx (W,),..., ORFx (1)), z) = 1]
= Pr[A Rk (ORFx (1), ..., ORFk (1}), 2) = 1].

Throughout the rest of the proof we will denote adversary A’ as A and assume A only submits
oracle queries as described above.

Now that the oracle messages have been untangled, we can use adversary B4 g to help complete
our analysis. To account for the multiple DFA obfuscations, we relabel Ba g as By (v, w,) and
make the following modifications in Figure 4:

e Under GENERATE STATE TABLE replace the existing code with:
for v —1tot do
(|mls, | Tablel;, Tstate,i) — STATETABLE(Y;)

5(Tlransition_Query]Di7S‘ca‘ce_Upda,te]Di) denotes the single Transition_Query and complete chain of
State_Update queries made by ID;.

20

Adversary A’:

INPUT: OR7x (Uy), ..., ORFx (W)

EXTRACT TABLE SIZE:
for i +— 1tot do
| Table|1p, < EXTRACTTABLESIZE(ORFx (U,))

REORDER AND RESUBMIT:
When A makes a Transition_Query query ID;||a do
temp, p, < &
SID; < 0
When A makes a State_Update query ID;||T,[s] or ID;| T [s]||Auth’ do
Tip,[smp;] « Te[s]
if s;p, = |Table|;p, — 1 then
Query oracle Rp, with ID;|[temp,, rp,
for s — 0 to |Table|;p, — 1 do
if s # | Table|p, — 1 then
Query oracle Ry, with ID;||Tp,][s]
if s = | Table|;p, — 1 then
Query oracle Ry, with ID;||Tp,[s]||Auth’
A < Oracle’s output
Sip, < Sip;, +1

V<A
Return bt/

Figure 8: Adversary A’

Under ENCRYPT STATE TABLE ENTRIES replace the existing code with:
for i — 1 tot do

Query oracle £ with T
(ID;, Tc i, Auth;) <= E(Tstate,i)

A <= O(ID;, |Table|;, Tc i, Auth;), ..., O(IDy, | Table|t, Tct, Authy), =

Under Simulation of Oracle R: INPUT include the inputs ID;, |m|;, | Tablel;, Tstarei, Te,
Auth; fori=1,...¢.

Under Simulation of Oracle R: INITIALIZATION assign each ID; a unique copy of the
variables listed.

Modify all incoming and outgoing messages to account for IDs.

Following Proposition 2, we replace every oracle call made to € and V in By (y, ... w,)With multiple
calls to either Fx or Fun and call this simulation By (g, . v t)'. Therefore given that adversary A
makes no more than ¢, distinct State_Update queries it follows that the total number of queries

21

made to Fx or Fun by By (g, w,) is no more than (g, 4 2t) max; |[E(¥;)| 4 t. Hence

|Pr[ARFx (ORFk (Wy),...,0RFk (1), 2) = 1]
—Pr[ARrun (ORrun (@), ..., ORFun (1), 2) = 1]|
= [PrBAE,) () = 1) = PrBE () = 1
- ‘Pr[ij;%___v%)’(z) = 1]~ Pr[BYy, 4 (2) = 1]‘
= Adv?™! (k,2)

F,Ba,(wy,....0p)

< AdVRTM (K, (g + 2t) max |E(;)| + 1)

Similarly it follows that

|Pr[AR (ORFwn (W), ... ORFon (W), 2) = 1]
_Pr[AR;‘un(OR;‘un(\Ill)’ el OR;‘un(\Ilt), Z) = 1]‘
& unyv un & un,V*
= [PrBS Y (2) = 1] = PrBY Y, (2) = 1]]
= Adv??;ﬁiffBA,wl ,,,,, oy (K Ges Qo e Mo, 2)

S AAVEETE e (B G Qo e 0, 2).
and
Pr[ARFun (ORFun (0)), ..., Ok (1)), 2) = 1]
— Pr[ARRand (ORkana (17), . .., ORkena (1), 2) = 1](

— [Pr[BrEme () =1] = Pr[BfRan (5) = 1](

A, (Pq,...,0y) A (Pq,...,0y)
ind$-cpa

= Advy . k 2).
SErun By (v, .. wt)(e e %)

where g. = t denotes the number of encryption queries made and 1. = 1, — 1 = max; |E(¥;)| the
maximum number of k-bit blocks each encryption and verification query may have.

Making similar changes to the simulator given in Figure 6 as those made to B4 ¢ above, we may

construct our final simulator S:}(l"“’\pt. As before we let each of the tables Tgqte,; consist of all

zeroes. Therefore following the arguments made in Proposition 2 we have
Pr[AR*Rand (OR*Rand (\:[Jl)7 ey OR*Rand (\:[Jt)7 Z) = 1]
—Pr[Sy VBl By —
= [Pr[BffRana (z) = 1] — Pr[SYr eI BOOL L qIBL Ly =

A,(Tq,...,0¢)
=0.

Using the bounds derived in Appendix A with ¢. = ¢t and 7. = 1, — 1 = max; |E(V;)| we have

22

the following result

|Pr[ARFx (ORFx (1y), ..., 0%k (By), 2) = 1] (15)
—Pr[gV e (B Bl oy —]
< AdvRI™(k, (qu + 2t) max | E(T;)| + 1)

int-ctxt-m
+Adv35Fu:,(BA,(q;1 \I’t))ctxt (k?> ey Qus Tes N Z)

,,,,,

ind$-cpa
+Advy . k z
SEFUI"BA,(\Ill VVVV ‘I’t)(7Qe77767)

< AdVRTM(k, (g, + 2t) max |E(;)| +)

5
+§qv(t + 1)2(max]E(\I/i)\2)2_k
2

o (3max |B(W,)? + max | B(¥,))2 7",

which is negligible. 0O

Following Section 2, we define an oracle to have “small” internal state with respect to ¢ composed
obfuscations, if the oracle’s internal state is no larger than O(tk). Following Corollary 1 and the
obfuscator above, we have the following result.

Corollary 2 If non-uniformly strong one-way functions exist, then the composition of non-resettable
DFAs is obfuscatable with respect to oracles with small internal state.

References

1]

2]

[3]

[4]

D. Angluin “A note on the Number of Queries needed to Identify Regular Languages”, In-
formation and Control, 51:76-87, 1981.

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, K. Yang “On the
(Im)possibility of Obfuscating Programs”, Advances in Cryptology - Crypto 2001, 1-18, 2001.

M. Bellare, O. Goldreich, A. Mityagin “The Power of Verification in Message Authentication
and Authenticated Encryption”, Crypto ePrint Archive, 2004/3009.

M. Bellare, C. Namprempre “Authenticated Encryption: Relations among notions and analy-
sis of the generic composition paradigm”, Advances in Cryptology - Asia Crypt 2000, Lecture
notes in Computer Science Vol. 1976, T. Okamoto ed, Springer Verlag, 2000.

M. Bellare, P. Rogaway “Code-Based Game-Playing Proofs and the Security of Triple En-
cryption” Advances in Cryptology - EUROCRYPT 2006, Vol. 4004, 409-426, Springer-Verlag,
May 2006.

R. Canetti “Towards Realizing Random Oracles: Hash Functions that Hide all Partial Infor-
mation”, Advances in Cryptology - Crypto 1997, 455-469, 1997.

R. Canetti “Universally Composable Security: A New Paradigm for Cryptographic Proto-
cols”, In /2nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 136-145
2001.

23

8]

[9]

[10]

[11]

[20]

[21]

[22]
[23]

R. Canetti “Security and Composition of Cryptographic Protocols: A Tutorial”, Crypto
ePrint Archive, 2006/1218.

R. Canetti, D. Micciancio, O. Reingold “Perfect One-way Probabilistic Hash Function”, Pro-
ceedings of STOC, 1998.

C. Colberg, C. Thomborson “Watermarking, Tamper-Proofing, and Obfuscation - Tools for
Software Protection”, Technical Report TR00-03, Department of Computer Science, Univer-
sity of Arizona, February 2000.

E. M. Gold “Complexity of Automaton Identification from given data”, Information and
Control, 37:302-370,1978.

O. Goldreich, S. Goldwasser, S. Micali, “How to Construct Random Functions”, J. of the
ACM, Vol. 33, 792-807, 1986.

O. Goldreich, S. Micali, A. Wigderson “How to Play any Mental Game - A Completeness
Theorem for Protocols with Honest Majority”, In 19th STOC, 218-229, 1987.

S. Goldwasser, S. Micali, C. Rackoff “The Knowledge Complexity of Interactive Proof Sys-
tems”, SIAM Journal on Computing, Vol. 18, No. 1, 186-208, 1989.

S. Goldwasser, G. N. Rothblum “On Best-Possible Obfuscation”, T'CC 2007, 194-213.

S. Goldwasser, Y. Tauman Kalai “On the Impossibility of Obfuscation with Auxiliary Input”,
FOCS 2005, 553-562, Oct. 2005.

S. Hada “Zero-Knowledge and Code Obfuscation”, Advances in Cryptology - Asia Crypt 2000,
443-457, 2000.

B. Lynn, M. Prabhakaran, A. Sahai “Positive Results and Techniques for Obfuscation”,
Advances in Cryptology - EUROCRYPT 2004, Lecture Notes in Computer Science, Springer-
Verlag, May 2004.

R. Ostrovsky “Software Protection and Simulation on Oblivious RAMs”, MIT Ph.D. Thesis,
May 1992.

R. Rivest, R. E. Schapire “Inference of Finite Automata Using Homing Sequences” In 21st
ACM Symposium on Theory of Computing, 411-420, 1989.

N. Varnovsky, V. Zakharov “On the Possibility of Provably Secure Obfuscating Programs”
Perspectives of Systems Informatics, 5th International Andrei Ershov Memorial Conference,
Lecture Notes in Computer Science. Springer-Verlag, July 2003.

H. Wee “On Obfuscating Point Functions”, Crypto ePrint Archive, 2005/001.

A. Yao “How to Generate and Exchange Secrets”, In 27th FOCS, 162-167,1986.

24

A Supplementary Proofs

In this appendix we review the security definitions of INT-CTXT and IND$-CPA and prove the
bounds used in inequality 13 and 15. All of the results proven below are based on the authenticated
encryption scheme shown in Figure 9. This generalized scheme is used for composing obfuscations,
with the DFA’s ID corresponding to the encryption IV. We will assume the Vs are fixed in size,
with a size strictly less than the security parameter k.

Algorithm &£,(M) Algorithm V,(IV’, C"|| Auth’)
C— L Co'll... |Gy — C"
IV — 0V 1V < k Xt e vkl
M||...|My—y — M, |M;| =k Auth — p(X7)
X;t e TV |1k lv] for s—0tot—1do
Auth — p(X7h) X¢ — Auth @ C4'
for s—0tot—1do Auth — p(X7)
X§ — IV]s|lo if Auth = Auth’ and
Y — p(X§) IV' € prev;, and
Cs —Y ® M sizec(IV') = |C’| then
C — C|Cs Return 1, else Return 0.
X{ — Auth @ C;
Auth — p(X7)
sizeg(IV) « |C|
prev y < prevy, U{IV}
IV «— 1V +1
Return (IV,C| Auth).

Figure 9: Generalized Encryption and Verification.

A.1 Integrity Awareness

In Proposition 2 and 3 we showed that the distinguishing advantage between the verifiers Vg, and
V* (with the adversary also having access to Epy,) is bounded above by the strong unforgeability
of the ciphertexts. We state the security definition formally below.

Definition 4 (Integrity Awareness w.r.t. Auxiliary Input): Let SEpu, be the symmetric
encryption scheme in Figure 9 using random functions and Acxy o PPT adversary with access to
two oracles, Epyn and Vpy,. Consider the following experiment with k € N and z € {0, 1}q(k) for
some polynomial q

25

Experiment Expd ™" (k, z)

Fun & Fun(k)
If ASEnViun (L 2) makes a query C to

ctxt
the oracle Vmun such that

- VFun(C) =1
- C was never a response to Epun
then Return 1 else Return 0.

We denote the winning probability in adversary Aciyx¢ breaking INT-CTXT-m as
AdvEESn (K, 2) == PrlExpSesin (k,2) = 1]
The INT-CTXT-m advantage over all PPT adversaries Actxt is defined as the maximum

AQVEED T (ks Ges o, e o, 2) 1= max{ AdVSESTIT (k. 2)}
where ¢. and ¢, denote the maximum number of oracle calls to Eryn and Vpy,, while 7, and n,
denote the maximum number of k-bit blocks per encryption and verification query. The scheme
SExun is said to be INT-CTXT-m secure w.r.t. auxiliary input if the advantage AdvglgFC‘f:t'm is
negligible over all PPT adversaries (with time-complexity polynomial bounded in k) given arbitrary

auxiliary input.

In the special case where we only allow a single verification query ¢, = 1 we define the advantage
as INT-CTXT-1. It was shown by Bellare et al. in [3] that if an encryption scheme SE is INT-
CTXT-1 secure (without an auxiliary input) then it is also INT-CTXT-m secure. Adding auxiliary
inputs is a trivial modification to the original proof. Since we will be using this result to simplify
our analysis we state it in the following lemma.

Lemma 1 (INT-CTXT-1 = INT-CTXT-M [3]) Let S€ be any symmetric encryption scheme
and z any polynomial bounded string in k with k > 1. Then

AdvglgCtXt_m(k> Ge;qu, 7767 7707 Z) S Qv - Advg‘lgCtXt_l (kv Ge; 7767 771)7 Z)

In the following Proposition we prove the scheme in Figure 9 is INT-CTXT-m secure when ¢, = 1.
This result is used to help facilitate the proof in Proposition 2.

Proposition 4 Let SEpun be the scheme given in Figure 9 with IV = 1. Let z be any polynomial
bounded string in k with q¢ =1, n, =ne + 1, and q,, k > 1. Then
AdvglgCtXt_m(k7 Ge; v, 7767 7707 Z) S Qv (4772 + 776)2_k

Fun

Proof: To prove the above inequality holds we will use the game-playing techniques introduced by
Bellare and Rogaway in [5]. Our goal is to incrementally construct a chain of games using simple
transformation techniques so that the terminal game is bounded above by a negligible factor. To
simplify our analysis we use the result of lemma 1 and derive an upperbound for INT-CTXT-1. Once
we have found a bound for INT-CTXT-1 the more general INT-CTXT-m bound will follow. For
the sake of this proof we will also assume that our adversary A is computationally unbounded and

26

therefore deterministic (since it may deterministically choose it queries to maximize it’s advantage).
The only restrictions we place on A is the number of queries it can make.

We begin our analysis by giving a description of game G1 shown in Figure 11. The scheme in
G1 is the same encryption scheme shown in Figure 9 with IV = L. Notice that since we assumed
IV = 1 the scheme SEp,y is no longer stateful and therefore not IND-CPA secure. Having IND-
CPA security is not essential to proving the claim (since g = 1). Also observe that we removed
the checking of sizec in game G1. We will instead assume wlog that the ciphertext submitted
for verification is the same size of the ciphertext returned by the encryption query. Let p be a
randomly (independent of z) chosen function from the set Fun(k). Observe that game G1 has only
two queries in its description: an encryption query and a verification query. The single encryption
query (ge = 1) simulates obfuscating a single DFA while the verification query (g, = 1) is the result
of restricting our analysis to INT-CTXT-1. Based on the description of game G1 it follows that

AdvBE (kg0 ne,my, 2) = Pr[Game G1 sets bad]

Fun
with g =1 and n. =1, — 1 =t.

To transform game G1 — G2 we add additional settings of bad in lines 208, 214, and 224. We
also observe that during the second query, the Auth value after the first index i where C;’ # C;
is just p(Xi_l). Therefore the modifications made in lines 219 through 225 are a direct result of
this observation. Since the functionality of game Gl and G2 are equivalent with the exception of
additional settings of bad it follows that Pr[Game G1] < Pr[Game G2].

To go from game G2 — G3 we unroll the for loops in line 205 and 221 and postpone the recordings
of the variable X7 in Dom(p). We also swap the assignment of the variable X « Auth& Cs with a

random sampling X7 & {0,1}* since the Auth variable used in the assignment of X7 is randomly
sampled during s — 1. Finally the assignments occurring after the setting of bad <« true are
removed. Therefore the changes made from game G2 to G3 are conservative (i.e. Pr[Game G2] =
Pr[Game G3]).

For the final game G3 — G4 we begin by first swapping the random-assignment in line 305 with
line 308 by replacing Y & {0,1}* and C, «— Y @ M, with C, & {0,1}* and Y « C, @ M,. Since
the variable Y is no longer used we may eliminate it from the game. Similarly since the values
recorded for p(X{) and p(X{) are never reused they may be arbitrarily renamed as defined. The
only prerecorded variable that is reused is X! on line 413. Given the above swapping it is easy
to see that both C' and Auth are random. Using the derandomization technique® we may replace
them with constants C||Auth. Since adversary A is deterministic there exist queries Mgl| ... ||[M¢—1
and C'||Auth’ corresponding to output C||Auth. By hardwiring these query-responses into game G4
we may bound the probability of setting bad as the maximum over all the possible query-responses
(thus removing the adaptivity of the adversary). It is not difficult to see that this maximum occurs
when t = 7, and the adversary submits a t + 1-block authentication query with the first ciphertext

block changed. Since there are t + 1 non-random variables XSZO"“’t_l,Xl_ ! that do not collide
with one another and 2¢ — 1 independent random variables szo""’t_l,Xlszl"“’t_ll with a single

dependent random variable X9 = X 9@ § some fixed § # 0 recorded in Dom(p), it follows that the

SDerandomization Technique: If a game G chooses a variable X & X and never redefines it we may derandomize
the variable by choosing a constant X to replace it. Given any adversary A, it follows that Pr[Game Ga sets bad] <
maxy Pr[Game G4 sets bad].

27

100
101
102

103
104
105
106

107
108
109
110
111
112

113
114
115
116

117
118
119
120
121

122
123
124
125
126
127

Game G1

On first query Mo||... || M;—1
C— 1
Xl—l — 1k
Auth & {0,1}%
p(Xh) — Auth
for s<—0tot—1do
X5 s]l0
v & 0,1}
if X§ € Dom(p) then Y — p(Xy)
p(X3) — Y
Cy —Y ® M,
C — C|Cs
X3 — Auth @ C;
Auth & {0,1}*
if X7 € Dom(p) then Auth «— p(X7)
p(X%) — Auth
Return C| Auth

On second query C’||Auth’
Co'l|.. . |Cs—1” = C’
Auth — p(X7Y)
for s—0tot—1do
X3 — Auth & Cy'
Auth & {0, 1}F
if X3’ € Dom(p) then Auth «— p(X3')
p(X3") « Auth
b—0
if Auth = Auth’ then bad «— true, b «— 1
Return b

Game G2

200
201
202

203
204
205
206

207
208

209
210
211
212

213
214

215
216

217
218
219
220
221
222

223
224

225
226
227
228

On first query My|| ... || M1
C—_1
Xl_1 — 1k
Auth & 0,1}k
p(X;Y) — Auth
for s—0tot—1do
X5 — s/|0
Yy & 0,1}k
if X§ € Dom(p) then bad — true,
Y — p(X5)
p(X3) — Y
Cs —Y ® M,
C — C|Cs
X7 — Auth & Cs
Auth & {0, 1}*
if X7 € Dom(p) then bad «— true,
Auth — p(X7)
p(X3) «— Auth
Return C| Auth

On second query C'||Auth’
Coll . |Ci-1||C]| - - [|Ceeri = C7
i «— min{s | C,’ # O}
Auth «— p(Xf_l)
for s—itot—1do
X3 — Auth & Cy'
Auth & {0,1}*
if X3’ € Dom(p) then bad « true,
Auth — p(X3")
p(X3") «— Auth
b—0
if Auth = Auth’ then bad + true, b+ 1
Return b

Figure 10: INT-CTXT-1 Games G1-G2.

setting of bad based on these variables is

Pr[Variables in Dom(p) set bad] < {(

28

3t + 1 t+1 e
- —142

Game G3

300 On first query Myl ... |[|M;—1

301 C«+«— 1L

302 X1k

303 fors—0tot—1do

304 X5 —)0

305 Y& {01}k

306 if X§ € Dom(p) then bad «— true
307 p(Xg) — Y

308 Cs —Y @& M,

300 O« C|C,

310 X3 <& {0,1}*

311 Auth — X; @ C,

312 p(X5h) — Auth

313 if X7 € Dom(p) then bad — true
314 Auth & {0,1}*

315 p(XIY) «— Auth

316 Return C| Auth

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

On second query C’||Auth’
Coll - - |Cia||CY | - - || Coert = C”
i — min{s | Cy’ # C}
Auth — p(XI™1) = Xi @ C;
X — Auth® C!
if Xi" € Dom(p) then bad — true
ifi <t—1 then
fors—i+1tot—1do

x3' & fo, 11k

Auth — X3 @ C/

p(Xls_ll) — Auth

if X3' € Dom(p) then bad « true
Auth & {0, 1}*
p(Xf_ll) — Auth
if Auth = Auth’ then bad — true
Return 0

Game G4

400 Given M()H ...HMt,1

401 Xt e 1k

402 for s —0tot—1do

403 X§ < s]|0

404 if X5 € Dom(p) then bad «— true
405 p(X§) « defined

406 X7 & {0,1)*

407 p(X5h) «— defined

408 if X7 € Dom(p) then bad «— true
409 p(XT') < defined

410
411
412
413
414
415
416
417
418
419
420
421
422
423

Given C'||Auth’
Coll .- ICi=1]|C]| ... ||Cter” < C’
i+ min{s | Cs’ # Cs}
Auth «— Xi @ C;
X' — Auth®C, = Xi ® 8, some § £ 0
if Xi' € Dom(p) then bad — true
ifi <t—1 then
for s—i+1tot—1do

X3 & o0, 1)*

p(X57V) — defined

if X7’ € Dom(p) then bad « true
Auth & {0, 1}F
p(X17V) defined
if Auth = Auth’ then bad «— true

Figure 11: INT-CTXT-1 Games G3-G4.

which holds for any computationally unbounded adversary. Therefore given ¢. = 1, 1, = e + 1,

and Pr[Auth sets bad in line 423] = 27% we have

int-ctxt-1
Ak go, e,y 2) <
<

Pr[Game G4 sets bad]
Pr[Variables in Dom(p) set bad)]

+Pr[Auth sets bad in line 423]

()~ (3)

(4n2 + ne)27k.

29

In the case that IV # 1 we may derive a more general result. By letting the IV’s represent
the identity (which we denote as IDs) of each obfuscated DFA instance we may use the following
generalization to prove the main composition result in Section 3.1.

Proposition 5 Let SEpuy, be the authenticated encryption scheme given in Figure 9 using random
functions and z any polynomial bounded string in k with qe,qy > 1, ny, =1+ 1, and k > 1. Then

o 5 -
Advg“g ctxt m(k> ey Qus Tes Mo Z) < —qvnz(qe + 1)22 k

Fun - 2

Proof: To simplify our analysis we will reuse the result of lemma 1 and derive an upperbound for
INT-CTXT-1. Following the description in Figure 9 we modify the encryption scheme in games
G1 through G4 (Proposition 4) to include IVs. Observe that the verifier shown in Figure 9 only
accepts ciphertext queries that contain IV’s previously returned by Epun, such that the length of
the new ciphertext match’s the length of the original. Therefore an adversary gains no advantage
by submitting a ciphertext query that contains an IV never seen before or if the length of the
ciphertext submission is different than the length of the original for that particular V. To simplify
the game descriptions we assume wlog that an adversary does not make these type of queries.

As in the last Proposition it is easy to see that an adversary maximizes their advantage by
submitting encryption queries satisfying the bound 7. with a single 7. 4+ 1-block authentication
query with the first ciphertext block changed (may choose any of the past IVs). Therefore it follows
for any fixed chain of queries there are at most g.(7. + 1) non-random variables Xl_,}w ng?/’“""e_17

IV =0,...,q. — 1 that do not collide with one another and 7.(ge + 1) — 1 independent random

variables Xf??/’"""e_l,Xfi‘l/’"""e_ll, IV =0,...,q. — 1 with a single dependent random variable

/

X ?7 o= X?’ v @ 0 some fixed 6 # 0 recorded in Dom(p). Hence it follows that the setting of bad
for these variables is bounded above by

Pr{Game G4 sets bad] < {(qe(m +1) +7e(ge + 1)) B (qe(ne + 1)) 3 1} ok

° 2
- {(ne(qe2+ 1)> + gene(qe + 1) (e + 1) — 1} -
= {gnf(qe +1)2— 1} ok

which holds for any computationally unbounded adversary. Therefore we have

Advg‘g;f:t'm(k, ey QusNes M, 2) < Pr[Game G4 sets bad]
< Pr[Variables in Dom(p) set bad]
+Pr[Auth sets bad in line 423]
) _
< 5772((16 + 1)22 k.

A.2 Indistinguishable from Random

In Proposition 2 and 3 we measured the indistinguishability between the schemes Epyn and Erang
under chosen plaintext attacks. The randomized scheme Eg.ng as you recall took any message M

30

that was a multiple of k-bits (k the security parameter) say t and returned a random string of
(t + 1)k-bits along with an V. In Proposition 2, Epyy does not use an IV therefore in this case we
take IV = L. Formally we define Egang as

Algorithm Eganq (M)
Mol [Mi—r — M, | M| = k
Rand <& {0, 1}(t+1Dk
IV «— 1V +1
Return (/V,Rand).

For the definition of indistinguishable from random to make sense in our setting we give the adver-
sary an additional auxiliary input.

Definition 5 (Indistinguishable from Random): Let SEpu, be the symmetric encryption
scheme in Figure 9 using random functions and Acpa a PPT adversary with access to two ora-
cles, Epun and Erang. Consider the following experiment with k € N and z € {0, 1}q(k) for some
polynomial q

Experiment Exp?gf;ipcha(k, 2)

Fun & Fun(k)
b A‘gggnngand
Return b

We denote the winning probability in the adversary breaking IND$-CPA as
ind$- ind$-
AdvglgFui?cha(k‘, z) = Pr[Exp?gFufjcpa(k, z) =1]
with the maximum over all possible PPT adversaries as
AAVEST P (K, o e, 2) 1= glaX{AdVind$'Cpa (k. 2)}
cpa

SgFun 7Acpa

where ¢. denotes the maximum number of oracle calls to Epun Or Erand, and 7. the maximum
number of k-bit blocks per encryption query.

Proposition 6 Let SEpuy, be the authenticated encryption scheme given in Figure 9 using random
functions and z any polynomial bounded string in k with g. > 1, and k > 1. Then

AQVEEE P (ke g, e, 2) < 2 (302 +)27

M|r$w

Proof: We can bound the IND$-CPA advantage using game G2 in Figure 10 if we remove the single
authentication query and allow for more than one encryption query. This simulates both SEwy, and
SERana Which are identical until bad is set. Therefore using the Fundamental Lemma of Game-
Playing we have Adv?gf;zpa(k,qe,ne,z) < Pr[Game 2 sets bad]. Following the same arguments
as used in Proposition 4 (including the assumption that A is deterministic and computationally

unbounded) we may transform game G2 to G4. Since for any fixed chain of queries there are at

31

most g (ne+1) non-random variables X1_11V7 Xg??/’"""e_l, IV =0,...,q.—1 that do not collide with

one another and g.7. independent random variables Xls??/’“""e_l, IV =0,...,q. — 1 in Dom(p), it
follows that the setting of bad in game G4 is bounded above by

Pr[Game G4 sets bad] < { <qe(2”§ * 1)> - (‘JE("Z * 1)> } 9=k

which holds for any computationally unbounded adversary. Therefore it follows that

Adv ind$- Cpa(k’, e, Tes Z) < Game G4 sets bad]

SEF
{ <qe 21 + 1) > B (qe(ne2+ 1)) } ok

%(3776 +1e)27".

IA

N

32

