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Abstract 
 
Advancements in our capabilities to accurately model physical systems using high resolution finite element 
models have led to increasing use of models for prediction of physical system responses. Yet models are typically 
not used without first demonstrating their accuracy or, at least, adequacy. In high consequence applications 
where model predictions are used to make decisions or control operations involving human life or critical systems, 
a movement toward accreditation of mathematical model predictions via validation is taking hold. Model validation 
is the activity wherein the predictions of mathematical models are demonstrated to be accurate or adequate for 
use within a particular regime. Though many types of predictions can be made with mathematical models, not all 
predictions have the same impact on the usefulness of a model. For example, predictions where the response of 
a system is greatest may be most critical to the adequacy of a model. Therefore, a model that makes accurate 
predictions in some environments and poor predictions in other environments may be perfectly adequate for 
certain uses. The current investigation develops a general technique for validating mathematical models where 
the measures of response are weighted in some logical manner. A combined experimental and numerical 
example that demonstrates the validation of a system using both weighted and non-weighted response measures 
is presented. 
 
Nomenclature 
 
fX(x) Probability density function of random variable X 
FX(x) Cumulative distribution function of random variable X 
P(.) Probability of an event 
L, U Lower and upper bounds of a probability interval 
S A validation score 
E Modulus of elasticity of a foam 
ρ Weight density of a foam 
x Measure of response of model 
y Measure of response of experimental system 
 
Introduction 
 
Model validation is the process of testing the adequacy of predictions obtained from a mathematical model 
relative to the realized experimental behavior of a physical system. The model validation process is described in 
references [1,2]. Here, we consider the validation of mathematical models of structural dynamic systems. 
Numerous techniques have been developed for performing validation comparisons on structural dynamic 
systems. (See, for example reference [3].) We focus on a technique that performs weighted comparisons of 
discrete response measures of structural dynamic system behavior related to the frequency response functions of 
linear structures.  
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We assume that the model under consideration is a stochastic finite element model (FEM) that can be used to 
approximate the probability distribution of a measure of structural response. The model may accomplish this 
directly or indirectly, via a Monte Carlo approach. We also assume that there is a relatively small number of, 
realizations of the physical system that the model is meant to simulate. The experimental responses are treated 
as deterministic. However, if there are many realizations of the physical system, then statistics of responses can 
be computed and system behavior can be treated probabilistically. Each physical system realization can be 
excited, and have its response measured to compute the response measures of interest. 
 
The validation technique developed here is demonstrated for the model of a structural dynamic system, most of 
whose elements are deterministic, but which includes encapsulating foam that has random characteristics. The 
foam, its stochastic model and its calibration are described, in detail, in [4,5]. The linear viscoelastic model used 
for the foam was implemented in the SALINAS finite element code and is described in reference [7]. The purpose 
of the model is to predict the temperature-dependent mechanical response of the foam to mechanical forces. The 
purpose of the overall model, including the foam, is to predict spatially dependent displacements, velocities, and 
acceleration responses. 
 
This paper summarizes the validation algorithm and the results of a validation comparison involving a structure 
that includes the encapsulating foam mentioned above, and its FEM. The validation is conducted using a 
measure of acceleration frequency response functions (FRFs). The following section describes an approach to 
develop a probabilistic description of model-predicted structure behavior, and an approach to performing 
validation comparisons. Section 2 shows how to develop weighted validation comparisons for an accuracy-based 
criterion. Section 3 shows how to relax the accuracy-based criterion into an adequacy-based criterion. Section 4 
presents an experimental and numerical example demonstrating some validation comparisons. Finally, 
concluding remarks are made in Section 5. 
 
 
1 Probabilistic Description of Model-Predicted Response and Validation Comparisons 
 
In order to validate a structural dynamic model it is necessary to select a measure of system response or 
structural behavior for use in comparison of the model to the experimental system. It is assumed that such a 
measure of physical system behavior has been chosen, and that the measure is available at n values of the 
system independent parameter of interest. Denote the model-predicted response measures 

. The subscript i indexes the realization of the stochastic model response, and the 
subscript j indexes the independent variable. Denote the measures of experimental response 

. The indices represent the same quantities as defined, above. 

n,...,j,m,...,i,x modij 11 ==

n,...,j,m,...,i,y expij 11 ==

 
The number of model predicted response measures, , is assumed to be sufficient to establish a 
probabilistic description of the model. At a particular index, j, of the independent variable, all the measures of 
experimental response , will be compared to the probabilistic description of the model-predicted 

response. Therefore, there will be a total of  comparisons. If in a sufficient number of weighted 
comparisons the model compares favorably with the experimental results, then the model will be judged valid. 

modm

expij m,...,i,y 1=

expnm

 
Comparisons are performed using a probabilistic representation for the model-predicted measures of response. 
Numerical predictions of the response measure are used to form the kernel density estimator (KDE) of response 
measures at each value of index j. The KDE [6] is an estimator of the probability density function (PDF) of data at 
index j. 
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where  is the random variable from which the realizations of the experimental response measure are 
sampled, and 

n,...,j,X j 1=

ε  is a smoothing parameter of the KDE. The KDE can be integrated to obtain the estimator of the 
cumulative distribution function (CDF) of the random source of the model-predicted measures of response. 
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where ( )⋅Φ  is the CDF of a standard normal random variable. 
 
The p-valued probability interval of  is the interval within which the probability is p that when a single random 

experiment is performed, the outcome will fall within the interval. The quantity p is a number in the interval 
jX

[ ]10, . 
We can use the estimated CDF to approximate the p-valued, symmetric probability interval. The p-valued 
probability interval is defined as the interval [ ]jj U,L  for which 
 
 ( ) n,...,jpUXLP jjj 1==≤<  (3) 
 
The probability interval is symmetric when ( ) ( ) 2/UXPLXP jjjj α=≥=≤ . The limits of the interval are 
established from 
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where both expressions can be evaluated numerically using Eq. (2). A validation comparison consists in 
establishing whether or not a realization of the experimental response measure at index j of the independent 
variable lies within the p-valued probability interval [ ]jj U,L . If it does, the comparison is a success for the model, 
and if not, the comparison is a failure for the model. If a sufficient number of comparisons result in successes for 
the model, then the model will be validated; if not, then the model will not be validated. 
 
In order to keep track of the model-to-experiment comparisons, an indicator variable is defined. 
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When , this is an indication of model success. The probability interval, 1=ijr [ ]jj U,L , is the p-valued probability 
interval, so if the model were a perfect representation of the experimental system, then a fraction of approximately 
p of the comparisons would yield the result 1=ijr . In fact, in the perfect-model scenario, each time a comparison 
is made, it is a Bernoulli trial, i.e., an experiment in which there are two possible outcomes and the probability of a 
positive outcome is p. Recall that there are a total of  comparisons. The probability of  successes in 

 Bernoulli experiments is the probability mass function (PMF) of the random variable N. It is governed by 
the binomial distribution, specifically, 

expnm snN =

expnm
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is the binomial coefficient. Equation (6) quantifies the chance that a perfect model will yield  positive 
outcomes. The CDF of the random variable N accumulates the probabilities in the PMF of Eq. (6), and is defined 

sn
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If we seek to assure that the probability of rejecting a perfect model is  then we will accept the model as valid 

when the number of successful comparisons, 
rejp

sval nn = , is given by 
 
  (8) ( ) 101 <<= −

rejrejNval ppFn
 
where  is the inverse of the CDF in Eq. (7). Because the CDF is defined only on integer realizations, 
numerical evaluation of Eq. (8) requires rounding to the nearest integer. 

( )⋅−1
NF

 
2 Weighted Validation Comparisons - Accuracy Criterion 
 
We now establish an approach for performing a validation comparison that weights the individual results of Eq. 
(5). Assume that a collection of weights, n,...,j,w j 1= , is defined to gage the importance of the validation 
comparisons. For example, validation comparisons may be weighted heavily where experimental response 
amplitudes tend to be high. Each of the outcomes, expij m,...,i,r 1= , defined in Eq. (5) is multiplied by the weight  

. The total raw score of a set of validation comparisons including  individual comparisons is jw expnm
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If every comparison outcome were a success, i.e., n,...,j,m,...,i,r expij 111 ===  , then  would be given by rawS
 

  (10) ∑
=

=
n

j
jexpraw wmS

1
 
Therefore, a normalized score for a set of validation comparisons is defined 
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The normalized validation score, S, must fall within the interval [ ]10, . When none of the validation comparisons 
yields a success, i.e., all the measures of experimental response fall outside their appropriate model-related 
probability intervals [ ]jj U,L , then . When many of the validation comparisons yield successes, particularly 

where the weights , are high, then the validation score defined in Eq. (11) is close to one, and this 
indicates favorable agreement of the model with the experiment. 

0=S

n,...,j,w j 1=

 
Given the analysis culminating in Eq. (8), the validation requirement is that the normalized validation score, S, of 
Eq. (11), must equal or surpass the fraction  
 
  (12) ( )mn/nS valval =

 
Finally, a validation metric can be defined as the difference between the realized validation score of Eq. (11) and 
the required validation score of Eq. (12). 
 
  (13) valmet SSS −=
 
When the validation metric is nonnegative the model is judged valid with respect to the criteria laid out in this and 
the previous sections. 
 
The development presented here includes the special case in which all weights are equal, i.e., n,...,j,w j 11 == . 
The approach presented here is what might be called a validation requiring accuracy. This is because a pre-
established number of experimental measures of response are required to lie within the probability intervals of the 
model-predicted measures of response, and no accommodation is included for over- or under-prediction by the 
model. In the following section an approach that relaxes the requirements to yield a validation requiring only 
adequacy will be developed. 
 
3 Weighted Validation Comparisons - Adequacy Criterion 
 
Under certain circumstances it may be desirable to perform a validation comparison where it is sufficient to 
assess the adequacy of model predictions in addition to, or instead of its accuracy. In these cases we may loosen 
the requirements for establishing positive results in Eq. (5). One way to accomplish this is to require that, in order 
for a comparison to be successful (or adequate), the jth measure of experimental response fall within the interval 
[ ] n,...,j,U,L jj 1=βα , where, normally, α  is a quantity less than or equal to one, and β  is a quantity equal to or 

greater than one. (The case, 1== βα  yields the accuracy validation defined above.) For example, if an over-
prediction of the response measure by a factor of two by the model is considered acceptably conservative, and no 
under-prediction is permitted, then we may set 150 == βα ,. . 
 
4 Experimental/Numerical Example 
 
The structure used in this investigation is a simple assembly of two metal, prismatic masses with equal 
dimensions, joined by a prismatic element of foam with cross section equal to the cross sections of the two metal 
elements. An experimental structure is shown in Figure 1. 

 
Figure 1. Photograph of the structure whose model is validated in this investigation. 



 
The foam is cellular, with physical properties that vary as random fields and with temperature. Specifically, the 
foam density, modulus of elasticity, shear modulus, and energy dissipation characteristics all take random values 
for every finite volume specimen (average characteristic over specimen volume) and for every temperature. A 
sequence of experiments – known as calibration experiments - on various foam samples and on a collection of 
structures like the one shown in Figure 1, with both metal elements fabricated from steel, at various temperatures, 
were used to characterize the foam material properties. It was found that all the properties listed above vary 
randomly, but the randomness is dominated by the foam density, and the modulus of elasticity is a nearly (but not 
exactly) deterministic function of the foam density. Figure 2 shows a plot of the foam modulus of elasticity, 
measured and inferred form the calibration experiments at ambient temperature. The circles denote experiment 
results, and the line through the origin and the midst of the points is the sample mean of the data obtained via 
regression. The sample mean function has the formula 
 
  (14) ( ) ( ) ksiTCE 2ρρ =
 
where ρ  denotes the material weight density, ( )TC  is a temperature-dependant coefficient of the square law, 
and ( )ρE  is the density-dependent material modulus of elasticity. For the data plotted in Figure 2, the standard 
deviation of vertical distance of data from the mean regression line is ksi.E 302=σ , the standard deviation of the 

weight density is , and 3851 ft/lb.=ρσ ( ) 1120.TC =  (compatible units). The deviations of the modulus of 
elasticity values from the mean line are relatively small compared to the deviations of the material weight density 
from the mean. Therefore, the weight density is modeled as a random variable, and the modulus of elasticity is 
modeled as a deterministic function (Eq. (14)) of the weight density. 
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Figure 2. Foam modulus of elasticity in ksi versus weight density in lb/ft3. 

Data (blue circles), Estimated mean (red line) 
 
Aside from the calibration experiments, a sequence of validation experiments was run on six nominally identical 
replicates of a system like the one shown in Figure 1. The experiments were conducted at six temperatures, in 
order to validate the foam model at various temperatures. For the purposes of demonstrating the validation 
procedures presented in this paper, we summarize a validation comparison performed on one structure, at one 
temperature. The validation structure is the same as the calibration structure shown in Figure 1. However, 
validation experiments were done above and below room temperature whereas calibration was only done at room 
temperature. Therefore, its dynamic characteristics differ from those of the calibration structures. The results of 
the validation experiments were not made available to the modelers prior to performance of comparisons of 
mathematical model predictions to the experimental results. 
 
The validation structure was excited with a sequence of forces from an impact hammer, and responses were 
measured with tri-axial accelerometers located as in Figure 1. Experimental and model-predicted results from one 
set of impacts – those applied in the transverse direction near one end of the structure – will be summarized here 
from tests performed at 24 °C. The measured response accelerations were used to estimate the structure 
frequency response functions (FRFs), and one of the FRFs is shown in Figure 3. This is the FRF of a validation 
structure where the input excitation is in the transverse direction near one end of the structure, and the response 
acceleration is in the transverse direction on the mass opposite the excitation. 
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Figure 3. Typical FRF for a validation structure like the one shown in Figure 1. 

 
The FEM of the structure was constructed in the Salinas framework [7]. It uses 3282 eight-node hexagonal 
elements. the elements are approximately, uniformly sized. The model contains 4120 nodes, and there are three 
degrees of freedom per node, therefore the model has 12,360 degrees of freedom. The model was solution 
verified, i.e., a convergence study was performed to show that the FEM converged satisfactorily. The metal 
components are assumed to have deterministic material properties. For each realization of the structure, the foam 
has homogeneous, uniform properties. The modulus of elasticity is assumed to be a random variable modeled as 
in Eq. (14), where the material weight density, ρ , is a random variable. The random variable ρ  is assumed to 

have a normal distribution with mean equal to  and standard deviation equal to 

. 

30019 ft/lb.=ρμ

3281 ft/lb.=ρσ
 
In order to develop stochastic realizations of the model-predicted FRFs corresponding to the experimental FRFs, 
the values of the foam weight density random variable are sampled using the Latin hypercube approach [8]. For 
each sample of foam density the material modulus of elasticity is computed, and for each modulus of elasticity 
value we use the finite element code to evaluate the structural FRF. The FRFs of twenty modeled structures 
whose foam densities were chosen via Latin hypercube sampling are shown in Figure 4. As for the experiment, 
the input excitation is in the transverse direction, and the response acceleration is in the transverse direction on 
the mass opposite the excitation. 
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Figure 4. Typical FRFs of system behavior from FEM of structure in Figure 1. 

 
Under some circumstances the model-predicted FRFs of Figure 4 might be compared directly to the validation 
structure FRF of Figure 3 to establish the validation adequacy of the model. However, to use the framework 
developed in previous sections we require a discrete measure of the FRF moduli. We define such a discrete 

measure as follows. For example, let ( )( ) 01 ≥= f,i,fH mod
i , denote the single experimental FRF modulus in 

Figure 3. A frequency averaged characteristic of the function is 
 



 ( ) ( )( ) n,...,j,m,...,idffH,ffwy exp
mod

ijij 11
0

==−= ∫
∞

γ  (15) 

 
where ( ) 0>∞<<∞− γγ ,f,,fw , is a positive, symmetric, absolutely integrable function whose width depends on 
the positive parameter γ . The function ( )γ,fw  serves as a weighting function on the modulus of the FRF, and the 
integral serves to average the weighted FRF over a band of frequencies established by the width of the window. 
The function ( )γ,ffw j−  is centered at the frequency , therefore, the weighting occurs for frequencies 

surrounding the frequency . The operation described here establishes the measures of experimental response, 

mentioned in Section 1, 

jf

jf

n,...,j,m,...,i,y expij 11 == . An analogous weighting can be performed on the model-

predicted FRFs to obtain a frequency averaged characteristic of that data, n,...,j,m,...,i,x modij 11 == , which 
represent the model-predicted response measures. 
 
When we use the approach of Eq. (15) to establish discretized response measures of the experimental and the 
model-predicted FRFs we can perform a validation comparisons as described in Sections 1, 2, and 3. Consider 
the case where the windowing function is given by 
 

 ( ) γγ
γπ

γ γ 22
2
1 22 2 <<−= − fe,fw /f  (16) 

 
The window is a truncated Gaussian density function. Application of Eq. (15) to the FRFs of Figures 3 and 4 
yields the results shown in Figure 5. The center frequencies are ( )( ) 903181100 1 ,...,j,.f j

j =×= − , and each 
window width equals its corresponding center frequency. The graph makes it clear that the model predictions fit 
the data quite well, particularly at the higher frequencies. 
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Figure 5. Windowed measures of experimental (blue circles) and model-predicted (red x’s) FRFs. 

 
The information provided in Figure 5 can be used to perform a validation comparison as outlined in Sections 1, 2, 
and 3. This was done for the response characteristics in Figure 5. To accomplish the validation, ninety percent 
probability intervals were used. The probability intervals are shown by the crosses Figure 5. The probability of 
rejecting an acceptable model was set to 200.prej = . This level was chosen for purposes of demonstration of the 
technique; it is rather stringent. The weighting function for the first validation comparison was chosen to be 
uniform and equal to one at all frequencies. An accuracy-basis validation was completed; the resulting validation 
metric is . For the validation criteria used here – accuracy-basis validation, uniform weighting of all 
comparisons, stringent probability of rejection of 0.2, etc. - the model is rejected as not valid. 

10.Smet −=

 
The validation analysis was repeated using parameters identical to those listed above, except that now the 
windowed measures provided at each frequency in Figure 5 were weighted by the squared mean values of the 
experimental measures. An accuracy basis validation was completed and the resulting validation metric is 



160.Smet = . For this validation criterion - accuracy-basis validation, experiment-based weighting of all 
comparisons, stringent probability of rejection of 0.2, etc. - the model is accepted as valid. 
 
We note that in order to preserve the integrity of the validation process, the decision as to what criteria to use to 
perform validation analyses should be made prior to the validation comparisons. This comparison makes it clear, 
though, that when model is satisfactorily capable of making accurate predictions under some important set of 
circumstances – for example, where amplification of response over input is greatest – then the use of weighted 
validation comparisons may be valuable. 
 
5 Discussion and Conclusions 
 
This paper develops a technique for performing model prediction to experimental system validation comparisons. 
It permits the weighting of system characteristics or response measures to emphasize the importance attached to 
specific predictive capabilities. An example is presented to demonstrate how emphasis might be placed on the 
predictive capability of a linear model in the high amplitude range of its frequency response function. It is 
expected that the range of potential applications goes far beyond the example. The weighting can be made with 
regard to a model’s capability to make adequate predictions at various times, at various locations, and for various 
measures of response. All these applications can be accommodated using the present validation procedure. 
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