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ABSTRACT

Cs" interferes with the permeation of K* ions through potassium (K-) channels and
serves as a channel blocker. Presumably, the difference between its binding free
energy to the selectivity filter and its hydration free energy must be more negative
than that of K*, or even the permeable Rb" ions. Nonetheless, what still remains
unclear regarding the mechanism by which it interacts with K-channels includes the
following. In our previous quantum chemical studies, we found that highly selective
K-channels maintain a special local environment around their binding sites devoid of
competing hydrogen bond donor groups, which enables spontaneous transfer of K*
from states of low coordinations in water into states of over-coordination by 8§
carbonyl ligands in the channel filter. This over-coordination is physiologically
important to achieve K™ over Na* selectivity. Does the binding of Rb* or Cs™ to the 8-
fold sites in the channel also require the presence of this special local phase? In
addition to the properties of the solvation phase beyond the individual binding sites,
are there any structural differences between the inner coordination shells of the Cs™,
Rb" and K* 10ons that designate the former as a blocker and the latter two as permeable
ions? To resolve these issues, we carry out a series of classical and quantum chemical
simulations and probe the effects of such determinants as coordination number, ligand
chemistry and local phase on the structural and thermodynamic solvation properties of
Rb" and Cs* ions. We then compare these results to our previous results on Na* and
K" 1ons to understand why K-channels appear to be selective for ion size (not by size).



Representative Structure
of K-channels

X-ray Structure of KcsA
PDB ID: 1K4C, MacKinnon and Co.
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Summary of previous quantum chemical studies
of K" over Na™ selectivity

1. Selectivity in K-channels is due to constraints on over-coordination
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Tuning ion selectivity in K-channels
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2. Selectivity in Valinomycin is due to constraints on cavity size

In contrast to K-channels,
Valinomycin molecules
achieve K*/Na*

selectivity by using:
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Issues with respect to understanding Rb* and Cs™ conduction
through K-channels

1) Does the binding of Rb*" or Cs™ to the 8-fold sites in the channel also require the
presence of a special local quasi-liquid phase?

2) In contrast to K™ and Rb", Cs™ moves sluggishly through the channel. Why?
a) Is it because it is too large to fit through the selectivity filter?
b) Or does it bind more tightly to the selectivity filter as compared to K* and
Rb™?

a) If so, then is it because of specific differences between the intrinsic
coordination properties of the ions?

b) And/or is it because specific chemical + structural properties of the
binding sites make them bind more tightly to Cs*?

c) And/or, is it because specific chemical + structural properties of the
region beyond the binding sites make the binding sites bind more
tightly to Cs*?



Structural properties of Rb™ and Cs™ ions in water:
Classical Versus A4b initio simulations

Classical - Aqvist Ion + SPC/E Water
ADb initio - PW91 Functional
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Hydration free energy difference between Rb™ & Cs™

Computed Value = AAG(aq.) = Outer Domain
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where, K ,(f) is the equilibrium constant of the following gas phase reaction

A+ nH20£[A(H20)n]



Interaction of Rb™ & Cs™ with Individual binding sites

Individual binding sites are more selective for Rb*

S1/S2/S3

AAG =-9.9 kcal/mol
RMSD =0.64 A

AAG = -9.4 kcal/mol
RMSD =0.13 A




Interaction of Rb*" & Cs™ with Individual binding sites & water

S1 with One Extra-cellular Water

Optimized S1 with Rb*
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Interaction of Rb™ & Cs™ with Multiple binding sites

+ H,0
> AAE =-7.9 kcal/mol
Rb™ — Cs™ With a water molecule in
site S3, site S2 1s still more
selective for Rb"
+ H,0
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Rb™ — Cs™ With a water molecule in

site S3, site S4 1s also more
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Interaction of Rb™ & Cs™ with Multiple binding sites

With a water molecule in
site S4, site S3 becomes
more selective for Cs*

Rb* in S3
& H,0 in S4

Cs™1n S3
& H,0O in S4
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Summary & Conclusions

Ly
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3)

Binding of Cs™ to the 8-fold sites in the channel does not require the presence of

a special local quasi-liquid phase, as it is also 8-fold coordinated in liquid water.

This is in contrast to the requirements for the binding of both K* and Rb* 1ons,

which are over-coordinated in the selectivity filter.

In contrast to K™ and Rb*, Cs™ moves sluggishly through the channel because
a) Cs"may be too large to fit through the selectivity filter (Add Citations)
b) In addition, it also binds more tightly to site S3, provided

a) site S4 is occupied by a water molecule, and
b) site S3 1s surrounded by a quasi-liquid pocket to allow Cs* to over-
coordinate with 9 ligands
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