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Abstract

We describe an entirely statistics-based,
unsupervised, and language-independent
approach to multilingual information re-
trieval, which we call Latent Morpho-
Semantic Analysis (LMSA). LMSA over-
comes some of the shortcomings of relat-
ed previous approaches such as Latent
Semantic Analysis (LSA). LMSA has an
important theoretical advantage over
LSA: it combines well-known techniques
in a novel way to break the terms of LSA
down into units which correspond more
closely to morphemes. Thus, it has a par-
ticular appeal for use with morphological-
ly complex languages such as Arabic. We
show through empirical results that the
theoretical advantages of LMSA can
translate into significant gains in precision
in multilingual information retrieval tests.
These gains are not matched either when
a standard stemmer is used with LSA, or
when terms are indiscriminately broken
down into n-grams.

1 Introduction

As the linguistic diversity of textual resources in-
creases, and need for access to those resources
grows, there is also greater demand for efficient
information retrieval (IR) methods which are truly
language-independent. In the ideal but possibly
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unattainable case, an IR algorithm would produce
equally reliable results for any language pair: for
example, a query in English would retrieve equally
good results in Arabic as in French.

A number of developments in recent years have
brought that goal more within reach. One of the
factors that severely hampered early attempts at
machine translation, for example, was the lack of
available computing power. However, Moore’s
Law, the driving force of change in computing
since then, has opened the way for recent progress
in the field, such as Statistical Machine Translation
(SMT) (Koehn et al. 2003). Even more closely re-
lated to the topic of the present paper, implementa-
tions of the Singular Value Decomposition (SVD)
(which is at the heart of LSA), and related algo-
rithms such as PARAFAC2 (Harshman 1972),
have become both more widely available and more
powerful. SVD, for example, is available in both
commercial off-the-shelf packages and at least one
open-source implementation designed to run on a
parallel cluster (Heroux et al. 2005).

Despite these advances, there are (as yet) not
fully surmounted obstacles to working with certain
language pairs, particularly when the languages are
not closely related. This is demonstrated in Chew
and Abdelali (2008). At least in part, this has to do
with the lexical statistics of the languages con-
cerned. For example, because Arabic has a much
richer morphological structure than English and
French (meaning is varied through the addition of
prefixes and suffixes rather than separate terms
such as particles), it has a considerably lower type-
to-token ratio. Exactly this type of language-
specific statistical variation seems to lead to diffi-
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culties for statistics-based techniques such as LSA,
as evidenced by lower cross-language information
retrieval (CLIR) precision for Arabic/English than
for French/English (Chew and Abdelali 2008).

In this paper, we present a strategy for overcom-
ing these difficulties. In section 2, we outline the
basic problem and the thinking behind our ap-
proach: that breaking words down into mor-
phemes, or at least morphologically significant
subconstituents, should enable greater inter-
language comparability. This in turn should in the-
ory lead to improved CLIR results. Several alterna-
tives for achieving this are considered in section 3.
One of these, a novel combination of mutual-
information-based morphological tokenization (a
step beyond simple n-gram tokenization) and SVD,
is what we call LMSA. Section 4 discusses the
framework for testing our intuitions, and the results
of these tests are presented and discussed in section
5. Finally, we draw some conclusions and outline
possible directions for future research in section 6.

2 The problem

In many approaches to IR, the underlying approach
is to represent a corpus as a term-by-document ma-
trix in which each row corresponds to a unique
term' in that corpus, and each column to a docu-
ment in the corpus. The standard LSA framework
(Deerwester et al. 1990) is no different, except that
the (sparse) term-by-document matrix X is subject-
ed to SVD,

X =UsSV" (1)

where the ‘U matrix’ is a smaller but non-sparse
term-by-concept matrix, the ‘S matrix’ is a diago-
nal matrix of singular values, and the ‘V matrix’ is
a dense document-by-concept matrix for the doc-
uments used in training. Effectively, the U matrix
maps all the terms to a single set of arbitrary con-
cepts, such that terms which are semantically relat-
ed (as determined by patterns of co-occurrence)
will tend to be similar; similarity is usually meas-
ured by taking the cosine between two term vectors
from the U matrix. New documents can also be
projected into the LSA ‘semantic space’ by multi-
plying their document vectors (formed in exactly

! Pragmatically, terms can be defined very straightforwardly in
the regular expressions language as sequences of characters
delimited by non-word characters.

the same way as the columns for the term-by-
document matrix) by the product US™, to yield a
document-by-concept vector. LSA is a completely
unsupervised approach to information retrieval in
that the associations between terms simply fall out
from the application of SVD to the data.

With cross-language or multilingual LSA, the
approach differs little from that just outlined. The
only required modification is in the training data:
the term-by-document matrix must be formed from
a parallel corpus, in which each document is the
combination of text from the parallel languages (as
described in Berry et al. 1994). Clearly, this infor-
mation retrieval model cannot be deployed to any
languages not in the parallel corpus used for train-
ing SVD. However, recent work (Chew et al.
2007) shows not only that there is no limit (at least
up to a certain point) to the number of languages
that can be processed in parallel, but that precision
actually increases for given language pairs as more
other languages are included. In practice, the fac-
tors which limit the addition of parallel languages
are likely to be computational power and the avail-
ability of parallel aligned text. As noted in section
1, the first of these is less and less of an issue; and
regarding the second, parallel corpora (which are
the mainstay of many current approaches to com-
putational linguistics and information retrieval,
particularly in real-world applications) are becom-
ing increasingly available. Substantially all of the
Bible, in particular, is already electronically avail-
able in at least 40-50 languages from diverse lan-
guage families (Biola University 2005-2006).

Yet, there are clearly variations in how well
CLIR works. In previous results (Chew et al. 2007,
Chew and Abdelali 2008) it is noticeable in partic-
ular that the results for Arabic and Russian (the
two most morphologically complex languages for
which they present results) are consistently poorer
than they are for other languages. To our
knowledge, no solution for this has been proposed
and validated. Ideally, a solution would both make
sense theoretically (or linguistically) and be statis-
tics-based rather than rule-based, consistent with
the general framework of LSA and other recent
developments in the field, such as SMT, and avoid-
ing the need to build a separate grammar for every
new language — an expensive undertaking.

To begin to assess the problem, it is helpful to
compare the lexical statistics for the Bible given in



Chew et al. (2007). These are arranged in order of
type-to-token ratio in Table 1.

Translation Types | Tokens Ratio
English (KJV) 12,335 | 789,744 | 1.56%
French (Darby) 20,428 | 812,947 | 2.51%
Spanish (RV 1909) 28,456 | 704,004 | 4.04%
Russian (Syn 1876) 47,226 | 560,524 | 8.43%
Arabic (S. Van Dyke) 55,300 | 440,435 | 12.56%

Table 1. Lexical statistics in a parallel corpus

This ordering also corresponds to the ordering of
languages on a scale from ‘analytic’ to ‘synthetic’:
meaning is shaped in the former by the use of par-
ticles and word order, and in the latter by the use of
inflection and suffixation. Some examples illustrat-
ing the differences between Russian and English in
this respect are given in Table 2.

English I read you read they read
Russian quTaro qUTacllb YUTAKOT
Table 2. Analytic versus synthetic languages

The element in Russian, of course, which corre-
sponds to ‘read’ is the stem ‘uwmra’, but this is em-
bedded within a larger term. Hence, in all three
examples, Russian takes one term to express what
in English takes two terms. The same occurs (alt-
hough to a lesser extent) in English, in which
‘read’ and ‘reads’ are treated as distinct terms.
Without any further context (such as sentences in
which these terms are instantiated), the similarity
in meaning between ‘read’ and ‘reads’ will be
readily apparent to any linguist, simply because of
the shared orthography and morphology. But for an
approach like standard LSA in which terms are
defined simply as distinct entities delimited by
non-word characters, the morphology is considered
immaterial — it is invisible. The only way a stand-
ard term-based approach can detect any similarity
between ‘read’ and ‘reads’ is through the associa-
tions of terms in documents. Clearly, then, such an
approach operates under a handicap.

Two unfortunate consequences will inevitably
result from this. First, some terms will be treated as
out-of-vocabulary even when at least some of the
semantics could perhaps have been derived from a
part of the term. For example, if the training corpus
contains ‘read’ and ‘reads’ but not ‘reading’, valu-
able information is lost every time ‘reading’ is en-
countered in a new document to which LSA might
be deployed. Secondly, associations that should be
made between in-vocabulary terms will also be

missed. Perhaps a reason that more attention has
not been devoted to this is that the problem can
largely be disregarded in highly analytic languages
like English. But, as previous results such as Chew
and Abdelali’s (2008) show, for a language like
Arabic, the adverse consequences of a morpholo-
gy-blind approach are more severe. The question
then is: how can information which is clearly
available in the training corpus be more fully lev-
eraged without sacrificing efficiency?

3 Possible solutions

At first glance, one might think that stemming
would be an answer. Stemming has been shown to
improve information retrieval, in particular for
morphologically complex languages (recent exam-
ples, including with Arabic, are Lavie et al. 2004
and Abdou et al. 2005). We are not aware, howev-
er, of any previous results that show unequivocally
that stemming is beneficial specifically in CLIR.
Chew and Abdelali (2008) examine the use of a
light stemmer for Arabic (Darwish 2002), and
while this does result in a small overall increase in
overall precision, there is paradoxically no increase
for Arabic. The problem may be that the approach
for Arabic needs to be matched by a similar ap-
proach for other languages in the parallel corpus.
However, since stemmers are usually tailored for
use with a particular language — and may not even
be available for some languages — it may not be
practical to use existing stemmers in this way.
Another more obviously language-independent
approach is to replace terms with character n-
grams®. This is feasible for more or less any lan-
guage, regardless of script. Moreover, implementa-
tion of a similar idea is described in McNamee and
Mayfield (2004) and applied specifically to CLIR.
However, McNamee and Mayfield’s CLIR results
are solely for European languages written in the
Roman script. This is why they are able to obtain,
in their words, ‘surprisingly good results... without
translation [of the query]’, and without using LSA
in any form. With related languages in the same
script, and particularly when n-grams are used in
place of terms, the existence of cognates means
that many translations can easily be identified,
since they probably share many of the same n-
grams (e.g. French ‘parisien’ versus English ‘Paris-

2 Hereafter in this paper, we use the term ‘n-grams’ to refer
specifically to character (not word) n-grams.



ian’). When languages do not all share the same
script or come from the same language family,
however, the task can be considerably harder.

Since the approach of n-gram tokenization has
the advantages of being entirely statistically-based
and language-independent, however, we examined
whether it could be combined with LSA to allow
CLIR (including cross-script retrieval), and wheth-
er this would lead to any advantage over term-
based LSA. Our intuition was that some (although
not all) n-grams would correspond to morphologi-
cally significant subconstituents of terms, such as
‘read’ from ‘reading’, and therefore associations at
the morpheme level might be facilitated. The steps
for this approach are listed in Table 3.

1 | Form a term-by-document array from the parallel
corpus as described above
2 | For each term, list all (overlapping) n-grams
3 | Replace terms in the term-by-document array
with n-grams, to form an n-gram-by-document
array
4 | Subject the n-gram-by-document array to SVD to
produce an n-gram-by-concept U matrix, singu-
lar values (the diagonal S matrix), and document-
by-concept V matrix
5 | Project new documents into the semantic space
by multiplying their vectors by US™
Table 3. Steps for n-gram-based LSA

Under all approaches, we selected the same log-
entropy term weighting scheme that we used for
standard LSA. Thus, whether a term ¢ stands for a
wordform or an n-gram, its weighted frequency W
in a particular document & is given by:

W =log, (F+1)x (1 +H,/log, (N))" 2)

where F is the raw frequency of ¢ in &, H, is the
entropy of the term or n-gram across all docu-
ments, N is the number of documents in the cor-
pus, and a is some arbitrary constant (a power to
which the global weight is raised). We have found
that an a>1 improves precision by changing the
relative distribution of weighted frequencies.
Common terms with high entropy become much
less influential in the SVD.

It should be noted that step (2) in Table 3 is sim-
ilar to McNamee and Mayfield’s approach, except
that we did not include word-spanning n-grams,
owing to computational constraints. We also tried
two variants of step (2), one in which all n-grams
were of the same length, (as per McNamee and

Mayfield 2004), and one in which n-grams of dif-
ferent lengths were mixed. Under the second of
these, the number of rows in both the term-by-
document and U matrices is of course considerably
larger. For example, Table 3 shows that the num-
ber of rows in the n-gram-by-document matrix for
English (EN) under the first variant (with n = 6) is
19,801, while under the second (with n < 6) it is
58,907. Comparable statistics are given for Arabic
(AR), Spanish (ES), French (FR) and Russian

(RU).
n= AR EN ES FR RU
1 35 27 41 41 47
2 939 516 728 708 827
3 11,127 4,267 5,563 5,067 7,808
4 40,835 13,927| 19,686| 15,948 30,702
5 53,671| 20,369| 35,526| 25,253| 54,647
6 39,822 19,801 42,408| 28,274| 65,308
Total |146,429| 58,907|103,952| 75,291|159,339

Table 4. Number of distinct n-grams by language
and length, up to length 6, based on Bible text

We also attempted a related approach with non-
overlapping n-grams. This set of experiments was
guided by the intuition that not all n-grams are
morphologically significant. Before we discuss the
details of this approach, consider the English
example ‘comingle’. Here, ‘co’ + ‘mingle’ are
likely to be more significant to the overall meaning
than ‘coming’ + ‘le’ — in fact, the presence of the
n-gram ‘coming’ could be misleading in this case.
One way to model this would be to change the
weighting scheme. The problem with this is that
the weighting for one token has to be contingent on
the weighting for another in the same term.
Otherwise, in this example, the n-gram ‘coming’
would presumably receive a high weighting based
on its frequency elsewhere in the corpus.

An alternative is to select the tokenization which
maximizes mutual information (MI). Brown et al.
(1992) describe one application of MI for identifi-
cation of word collocations; Kashioka et al. (1998)
describe another, based on MI of character n-
grams, for morphological analysis of Japanese. The
MI of a pair s; and s, as adjacent symbols is

MI = log Pr(s; s,) — log Pr(s;) —log Pr (s5) (3)

If s, follows s, less often than expected on the ba-
sis of their independent frequencies, then MI is
negative; otherwise, it is positive.



In our application, we want to consider all can-
didate tokenizations, sum MI for each candidate,
and rule out all but one candidate. A tokenization
is a candidate if it exhaustively parses the entire
string and has no overlapping tokens. Thus, for
‘comingle’, cotmingle, coming+tle, comingle,
ctotm+itnt+g+l+e, etc., are some of the candi-
dates, but comi+ngl and com+mingle are not. To
obtain MI, we need to compute the log probability
(logp) of every n-gram in the corpus. If Sy (k= 1,
..., K) denotes the set of all n-grams of length £,
and s, is a particular n-gram of length n, then we
compute logp for s, as:

logp = log F(s,) — log X (F(S,)) 4)

where F(s,) is the frequency of s, in the corpus,
and Z (F(S,)) is the sum of the frequencies of all S,
in the corpus. In all cases, logp is negative, and MI
is maximized when the magnitude of the sum of
logp for all elements in the tokenization (also nega-
tive) is minimized, i.e. closest to zero.

We considered some minor variants in the set-
tings for this approach in which word-initial and
word-final n-grams were indexed separately from
word-medial n-grams. Guided by McNamee and
Mayfield’s (2004) finding that there is an optimal
(language-dependent) value of k for Sy, we also
varied the maximum length of n-grams allowed in
tokenizations. Under all settings, we followed steps
3-5 from Table 3 (including SVD) from here on.

Essentially, then, this approach (which we call
latent morpho-semantic analysis) is like LSA, with
the difference that the types and tokens are statisti-
cally-derived morphemes rather than terms. LMSA
also differs from SVD of an n-gram-by-document
array in that LMSA rules most n-grams out of con-
sideration: they do not qualify as morphemes.
Whatever LMSA variant is used, the underlying
approach to morphological tokenization is com-
pletely language-independent. Some examples of
its output are shown in Table 5 for wordforms
from the Russian lemma npecmbikatbcs ‘to crawl’,
where the common stem (or at least an approxima-
tion thereof) is correctly identified.

Wordform Tokenization
MIPECMBIKAIOMIEMYCSl | MTPECMBIKAI0 | IEMYCs
MIPECMBIKAIONIMHUCS | MTPECMBIKAI0 | IIUMUCS
MIPECMBIKAIOIUMCS | TIPECMBIKAI0 | IIAMCS
MTPECMBIKAFOIITIXCS MPECMBIKAIO0 | IUXCS

Table 5. Examples of MI-based tokenization

We do not test the accuracy of these tokeniza-
tions directly, but the measure of CLIR precision,
described in the next section, is an indirect meas-
ure of the validity of our morphological tokeniza-
tions.

4 Testing framework

To assess our results on a basis comparable with
previous work, we used the same training and test
data as used in Chew et al. (2007) and Chew and
Abdelali (2008). The training data consists of the
text of the Bible in 31,226 parallel chunks, corre-
sponding generally to verses, in Arabic, English,
French, Russian and Spanish. The test data is the
text of the Quran in the same 5 languages, in 114
parallel chunks corresponding to suras (chapters).

Questions are sometimes raised as to how repre-
sentative the Bible and/or Quran are of modern
language. However, there is little question that the
number and diversity of parallel languages covered
by the Bible® is not matched elsewhere (Resnik et
al. 1999), even by more mainstream parallel corpo-
ra such as Europarl (Koehn 2002)*. The diversity
of languages covered is a particularly important
criterion for our purposes, since we would like to
look at methods which enhance retrieval for lan-
guages across the analytic-synthetic spectrum. The
Bible also has the advantage of being readily avail-
able in electronic form: we downloaded all our
data in a tab-delimited, verse-indexed format from
the ‘Unbound Bible’ website mentioned above
(Biola University, 2005-2006).

In accordance with previous work, we split the
test set into each of the 10 possible language-pair
combinations: AR-EN, AR-FR, EN-FR, and so on.
For each language pair and test, 228 distinct ‘que-
ries’ were submitted — each query consisting of one
of the 228 sura ‘documents’. To assess the aggre-
gate performance of the framework, we used aver-
age precision at 1 document, hereafter ‘P1° (1 if
the translation of the document ranked highest,
zero otherwise — thus, a fairly strict measure of
precision). We also measured precision on a basis

3 At December 31, 2006, complete translations existed in 429
languages, and partial translations in 2,426 languages (Bible
Society 2007).

* Since the Europarl text is extracted from the proceedings of
the European Parliament, the languages represented are gener-
ally closely-related to one another (most being Germanic or
Romance).



not used by Chew et al. (2007) or Chew and Ab-
delali (2008): multilingual precision at 5 docu-
ments (hereafter ‘MP5”). For this, each of the 570
documents (114 suras, each in 5 languages) is
submitted as a query. The results are drawn from
the pool of all five languages, so MP5 represents
the percentage, on average, of the top 5 documents
which are translations of the query. This measure
is still stricter than P1 because the retrieval task is
harder. Essentially, MP5 measures how well simi-
lar documents cluster across languages, while P1
measures how reliably document translations can
be retrieved when the target language is known.

5 Results and Discussion

The following tables show the results of our tests.
First, we present in Table 2 the results using stand-

Arabic have significantly improved (for example,
where Arabic documents are used as queries, MP5
is now 0.6205 instead of 0.4456). Still, the fact that
average MP5 is essentially unchanged means that
this is at the expense of results for other languages.

n= Average P1 Average MPS
3 0.8340 0.4951
4 0.8779 0.6761
5 0.8232 0.6365
6 0.6957 0.5197
7 0.5321 0.3986

Table 7. Results with LSA / overlapping n-grams

of fixed length

Now we present results in Table 8 where SVD is
performed on an array in which the rows corre-
spond to all overlapping, but not word-spanning, n-
grams of any length (varying maximum length).

ard LSA, in which terms are sequences of charac- n< Average P1 Average MP5
ters delimited by non-word characters. In essence, 3 0.8235 0.3909
in this test we reperformed an experiment in Chew 4 0.9039 0.6256
and Abdelali (2008). 5 0.9095 0.6839
P1 (overall average: 0.8796) 6 0.8863 0.6716
AR EN ES FR RU 7 0.8635 0.6470
AR | 1.0000 | 0.7544 | 0.7193 | 0.7368 | 0.7544 | Table 8. Results with LSA / overlapping n-grams
EN | 0.7719 | 1.0000 | 0.9123 | 0.9386 | 0.9474 | of variable length
ES | 0.6316 | 0.9298 | 1.0000 | 0.9298 | 0.8947
FR | 0.7719 | 0.9035 | 0.9298 | 1.0000 | 0.9386 | Here, the best results (with n<=5) more clearly
RU | 0.7719 | 0.9298 | 0.9035 | 0.9211 | 1.0000 | improve upon LSA: the increases in both P1 and
MPS: AR 0.4456, EN 0.7211, ES 0.6649, MPS5, though each only about 0.03 in absolute
FR 0.7614, RU 0.6947; overall average: 0.6575 terms, are highly significant (p < 0.005). Very like-

Table 6. Results with standard LSA

Our results differ from those in Chew and Ab-
delali (2008) — our precision is higher — because
we use a different value of a in equation (2) above
(here, 1.8 rather than 1). Generally, we selected a
so as to maximize MP5; discussion of this is be-
yond the scope of this paper, and not strictly rele-
vant in any case, since we present like-for-like
comparisons throughout this section. It is clear
from Table 6, however, that previously published
results are borne out here: the precision for Arabic
(the most ‘synthetic’ of the five languages) is con-
sistently lower than for the other four.

The next set of results (in Table 7) is for LSA
with SVD of an array in which the rows corre-
spond to all overlapping, but not word-spanning, n-
grams of fixed length. The best results here, for
n=4, are essentially no better on average than those
obtained with standard LSA. However, averaging
across languages obscures the fact that results for

ly this is related to the fact that when n-grams are
used in place of words, the out-of-vocabulary prob-
lem is alleviated. But there is a computational cost:
whereas our term-by-document array had 163,745
rows and 2,684,938 nonzero entries, the ngram-by-
document array (where n < 5) contains around
250% more rows and 150% more nonzeros.

A practical advantage of the ‘morpheme’-by-
document array of LMSA, on the other hand, is
that this cost is substantially reduced. This is be-
cause, as already mentioned, the vast majority of n-
grams are eliminated from consideration. Howev-
er, does taking this step significantly hurt perfor-
mance? The results for LMSA presented in Table 9
provide an answer to this.

For P1, the results are comparable to standard
LSA when we select settings of n < 7 (maximum
permitted morpheme length) or above. But under
the stricter MP5 measure, LMSA not only signifi-
cantly outperforms standard LSA (p <0.001, at n <



9); the results are also superior to those obtained
under any other method we tested. (The improve-
ment over standard LSA 1is also much clearer than
when Chew and Abdelali 2008 use the Darwish
light stemmer for Arabic to provide input to LSA.)

n < Average P1 Average MPS
4 0.6947 0.4411
5 0.8151 0.6102
6 0.8614 0.6793
7 0.8709 0.6912
8 0.8663 0.6856
9 0.8765 0.6909
10 0.8772 0.6740

Table 9. Results with LMSA®

As when n-grams are used without MI, fewer
types are out-of-vocabulary: for example, with cer-
tain settings for LMSA, we found that the percent-
age of out-of-vocabulary types dropped from 65%
under LSA to 29% under LMSA, and the effect
was even more marked for Arabic taken individu-
ally (78.5% to 34.4%). This is despite the fact
mentioned above that LMSA arrays are generally
more economical than LSA®.

Even the results in Table 9 can still be improved
upon. Following McNamee and Mayfield’s insight
that different length n-grams may be optimal for
different languages, we attempted to improve pre-
cision further by varying » independently by lan-
guage. For all languages but Arabic, n <9 seems to
work well (either increasing or decreasing maxi-
mum n resulted in a drop in precision), but by set-
ting n < 6 for Arabic, P1 increased to 0.8874 and
MP5 to 0.7368. As can be seen by comparing Ta-
ble 10 with Table 6, some of the most significant
individual increases were for Arabic.

Since n is a maximum length (unlike in
McNamee and Mayfield’s experiments), one might
expect that increasing n should never result in a

3 These results are with the stipulation that word-initial and
word-final n-grams are distinguished from word-medial n-
grams. We also ran experiments in which this distinction was
not made. Detailed results are not presented here; suffice it to
say that when word-medial and other morphemes were not
distinguished, precision was hurt somewhat (lowering it often
by several percentage points).

¢ With LSA, our term-by-document array consisted of 31,226
columns, 163,745 rows and 2,684,938 nonzeros. Under
LMSA, one equivalent (and fairly typical) array consisted of
31,226 columns, 127,722 rows and 3,215,078 nonzeros. Thus,
the input to SVD is a denser matrix, but the output (used to
project new documents into the semantic space) is, in this
case, 22% smaller.

drop in precision. We believe the benefit to limit-
ing the size of n is connected to Brown et al.’s
(1992: 470) observation that ‘as n increases, the
accuracy of an n-gram model increases, but the
reliability of our parameter estimates, drawn as
they must be from a limited training text, decreas-
es’. Effectively, the probabilities used in MI are
unrepresentatively high for longer n-grams (this
becomes clear if one considers the extreme exam-
ple of an n-gram the same length as the training
corpus).

P1 (overall average: 0.8874)
AR EN ES FR RU
AR | 1.0000 | 0.7895 | 0.7719 | 0.7281 | 0.7807
EN | 0.8158 | 1.0000 | 0.9298 | 0.9298 | 0.9123
ES | 0.7807 | 0.9474 | 1.0000 | 0.9123 | 0.8684
FR | 0.7632 | 0.9035 | 0.9474 | 1.0000 | 0.8947
RU | 0.7456 | 0.9298 | 0.9298 | 0.9035 | 1.0000
MPS: AR 0.5140, EN 0.8035, ES 0.8228,
FR 0.8035, RU 0.7404; overall average: 0.7368

Table 10. Best results with LMSA

If setting a maximum value for n makes sense in
general, the idea of a lower maximum for Arabic in
particular also seems reasonable since Arabic
words, generally written as they are without vow-
els, contain on average fewer characters than the
other four languages, and contain roots which are
usually no more than three characters long.

6 Conclusion

In this paper, we have demonstrated LMSA, a lin-
guistically (specifically, morphologically) more
sophisticated alternative to LSA. By computing
mutual information of character n-grams of non-
fixed length, we are able to obtain an approxima-
tion to a morpheme-by-document matrix which can
substitute for the commonly-used term-by-
document matrix. At the same time, because mutu-
al information is based entirely on statistics, rather
than grammar rules, all the advantages of LSA
(language-independence, speed of implementation
and fast run-time processing) are retained. In fact,
some of these advantages may be increased since
the number of index items is often lower.

Although from a linguist’s point of view the
theoretical advantages of LMSA may be intrinsi-
cally satisfying, the benefit is not confined to the
theoretical realm. Our empirical results show that
LMSA also brings practical benefits, particularly
when performing information retrieval with mor-



phologically complex languages like Arabic. Prin-
cipally, this seems to be due to two factors: allevia-
tion of the out-of-vocabulary problem and
improvement in the associations made by SVD.

We believe that the results we have presented
are promising in that they may point the way to-
wards still more sophisticated types of analysis,
particularly for multilingual text. We would like to
explore, for example, whether it is possible to use
forms of tensor decomposition (like PARAFAC2)
to leverage associations between n-grams, words,
documents and languages to still better advantage.

Finally, it is worth pointing out that our ap-
proach offers an indirect way of testing our statis-
tics-based approach to morphological analysis. The
better our ‘morphemes’ correspond to minimal
semantic units (as theory dictates they should), the
more coherently our system should work overall.
In this case, we have a final arbiter of the system’s
overall performance: CLIR precision.

In short, our initial attempts appear to show that
statistics-based morphological analysis can be in-
tegrated into a larger information retrieval architec-
ture with some success.
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