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Tungsten will be the divertor material for ITER

Tungsten chosen for high melting
point, thermal conductivity, low

erosion. ¥
. 2000, 1120 K I 9000s, 1120 K 22000s, 1120K I
e Heion damage to tungsten can cause 60eVHe /| |60eV He' " 60 eV He*
. PISCES-B PISCES-B PISCES-B
tendrll grOWth_ pure He plasma | |pure He plasma pure He plasma

~4 ITER shots ~20 ITER shots ~50 ITER shots

RN 06152007

* Tendrils are 10-50 nm in diameter and
can grow to at least 5 microns in
length.
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* Problem: Erosion of tendrils will
create prohibitively large amounts of
tungsten contaminants in the fusion
plasma.
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X-Ray Diffraction performed on W samples exposed to

high flux He ion beam at UCSD
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Low flux He ion beam used to bombard W samples at

Sandia

Experimental Setup WSz s
* An Electron Cyclotron Resonance (ECR) : ’
Source is used to ionize and accelerate He e
atoms. e R ’_

* The low flux ion beam bombards a W Lo | | . |
target on a heater stage capable of | | |
reaching 1000 °C. AW \
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Langmuir probe was used to create |-V traces to

determine

nlasma

oroperties

 Langmuir Probe (LP) used to
determine plasma density, electron
temperature, and ion flux.

— Measurements taken while varying
pressure, microwave power,
magnetic field strength, distance

from source.
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Langmuir probe studies used to determine plasma

oroperties of the ECR plasma source

» Initial exposures are able to be placed close to the ECR source aperture.

* Future exposures on in-situ diagnostic platforms will involve greater separation
between sample and source, requiring an understanding of plasma parameters
as a function of distance from the source.
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lon energy spectra obtained using Retarding Field
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lon energy spectra obtained by differentiating current

collected on Faraday curp

* Secondary Electron Emission Grid is set to a sufficiently negative potential to
block all electrons from reaching the Faraday cup and reflect SEE.

* All Faraday cup current is therefore ion current (/,,,)

* Discriminator Grid bias (V) is increased until current on Faraday cup current
reaches zero.

 Differentiating Faraday cup current as a function of V, provides the incoming
ion energy spectra.
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Operating conditions for ECR plasma source were

based on previous studies at UCSD

* Baldwin, et al. at UCSD used a low pressure rf Helicon
source to grow W fuzz.

UCSD

Helicon
— Minimum conditions for surface morphology change were

T, >900Kand T;,, > 27 eV

sample

- Baldwin, et al., ]NM, 2010 28Kl o2 a UC-P ISCES

* SNL chose an ECR plasma source to offer a lower flux to %
study early stages of morphology change.

— ECR source also offers much lower T, than traditional keV
magnitude ion beam sources.
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lon Flux (m sec?) 4.0x10%° 2.5x10%° (~6%) S ——
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Plansee W disc at 1000°C exposed to low flux He ion
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beam from ECR source for 40 hours at SNL
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Atomic Force
Microscopy (AFM)
scan shows bubbles

are up to 150 nm in SR |

l Heigh:_.t

diameter, 40 nm high EEERER
and the pits are up to
15 nm in depth
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High resolution SEM images of He bombarded

Plansee W shows remnants of burst blisters
* Images taken by Graham Wright at MIT.

* Blisters are ~150 nm in diameter.
« Blisters are found within varying amount of their caps fractured or blown off.
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Focused lon Beam (FIB) cross sections show bubbles

forming

below the surface

FIB images taken by Graham Wright at MIT.
* Comparisons made between Plansee W and ITER-Grade W.

— ITER-Grade W has grains aligned perpendicular to the surface to maximize heat

conduction.

Sub surface bubbles grow up to 100 nm in diameter.
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Bubbles form at greater depths in ITER-Grade W
as opposed to Plansee
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Elastic Recoil Detection (ERD) performed at MIT to

determine concentration of He as a function of depth

* ERD analysis performed on Plansee and ITER-Grade W samples from SNL and a
fuzz sample from MIT.
e First 10-15 nm of bubble samples is the “deficit” layer with only 0.5 at% He.
— Fuzz samples typically show higher He concentration in this region.
 Beyond 15 nm, He concentration in bubble samples quickly increases to 5-7
at%.

* Low He concentration in deficit layer may be an indication that the caps for
bubbles within the first 15 nm are too thin to withstand the pressure in the
bubbles and burst, releasing the trapped He.
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Accomplishments on He Implantation Studies

* Performed GIXRD measurements of W fuzz samples from PISCES
that have provided new insights into microstrain in the fuzz
tendrils.

* Characterized and utilized a low flux He ion source for exposing
heated samples.

— Majority of ITER divertor will receive low flux of He, requiring
a better understanding of various stages of surface damage.

* Performed SEM, AFM, FIB, ERD material analysis of exposed W
samples and identified large He bubbles that form below the
surface and create pits on the surface.

* Collaborated with material modeling groups to aid in determining
a mechanism for these surface morphology changes to W.
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Conclusions and Future Work

* Low flux He implantation of heated W samples results in the
formation of surface blistering and sub-surface bubbles with
diameters up to 150 nm.

* ITER-Grade W with planes oriented perpendicular to the surface
form bubbles at greater depth than standard Plansee W.

* He concentration in the near surface (10-15 nm) is significantly
lower than at greater depths, possibly due to burst blisters
releasing high pressure He bubbles.

* Future plans involve exposing additional samples at lower
sample temperatures, higher total fluence, higher ion energy to
monitor various stages of bubble growth and determine threshold
at which tendrils begin to grow.

* ECR plasma source will later be placed on an existing STM
experimental stage at SNL to perform in-situ exposure and
analysis of W samples to observe angstrom scale surface damage.
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