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Abstract—The current trend in high performance comput-
ing is to aggregate ever larger numbers of processing and
interconnection elements in order to achieve desired levels of
computational power, This, however, also comes with a decrease
in the Mean Time To Interrupt because the elements comprising
these systems are not becoming substantially more robust. There
is substantial evidence that the Mean Time To Interrupt vs.
number of processor elements involved is quite similar over a
large number of platforms. In this paper we present a system that
uses hardware level monitoring coupled with statistical analysis
and modeling to select processing system elements based on where
they lie in the statistical distribution of similar elements. This
approach will enable the scheduler/resource manager to deliver
a close to optimal set of processing elements given the available
pool and the reliability requirements of the application.

I. INTRODUCTION

Since it appears that High Performance Computing (HPC)
system elements will continue to have unexpected failures for
the foreseeable future, the HPC community has been putting
significant effort into building fault tolerant systems. Fault
tolerance work is ongoing in system software, scheduling and
resource management, and application software. Perhaps the
most important fault tolerance mechanism utilized in current
HPC systems is the ability to checkpoint and restart. Since use
of this mechanism requires both time and system resources
a lot of effort has been put into optimizing job size and
checkpoint and restart intervals and strategies [1].

There has been substantial work [1], [2] done to characterize
HPC platforms in terms of identifying gross system failure cat-
egories and average frequency of failures within these. These
failures are grouped into hardware, software, application, I/O,
human related, etc. categories, each with its own distribution of
mean time to occurrence vs. system size. These characteristics
are important because they allow system level failure models
to be built. These models can be used for application node
allocation and checkpoint frequency optimizations as well as
for making projections for the needs of future systems.

A major impediment to scaling HPC systems is component
mean time to failure. While the number of system compo-
nents is undergoing exponential growth, the robustness of the
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components themselves seems to be relatively constant. The
result is that as application runs become larger in terms of
number of components involved, the time between checkpoints
has to become smaller. To some extent this can be offset [1]
by the speedup in checkpointing due to the larger number of
participating elements in conjunction with faster file systems.
There is, however, a practical limit to I/O bandwidth based on
hard drive failure rates [2].

While we believe that fault tolerance in HPC can be
enhanced by application awareness of underlying hardware
characteristics, burdening the application programmer with
low level hardware related data gathering and analysis is not
practical. To date even system manufacturers have not tackled
this problem and are still shipping monitoring packages with
their systems that address only threshold-based fault detection
which typically does not leave time between detection and
failure for applications to respond.

The overall goal of this research is to increase application
performance on HPC platforms through historic and runtime
characterization of the underlying hardware in such a way
that it can give meaningful guidance to the OS, the sched-
uler and/or resource manager (RM), and the application thus
increasing the mean time to interrupt (MTTI) on a given
number of nodes. In this paper we present a monitoring
and analysis system that uses statistical and probabilistic
characterizations of system elements in the context of their
environments to infer the relative health of these elements. An
API allows the system to be queried for a list of elements and
associated characteristics from which the scheduler/RM can
assign resources and an application can calculate checkpoint
frequency and identify I/O resources to use.

This paper is organized as follows: first we introduce related
work and its relevance. We then describe our technical ap-
proach and show how it can be used to choose job appropriate
system elements in order to tailor the expected MTTI to
the application, number of process elements, etc. as well as
provide run time feedback to the application. We then present
some preliminary findings based on our proof of concept
deployment. Finally, we present planned extensions of our
approach to additional aspects of the HPC reliability problem.
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II. RELATED WORK

There has been substantial work in the area of fault tolerance
though most has focused on quantifying how MTTI scales
as a platform increases in aggregate compute power and
mechanisms to deal with the fact that such failures will occur.

Daly [1] has shown how run time efficiency can be op-
timized using historic Mean Time To Interrupt curves in
conjunction with other system parameters such as I/O write
rate, and Parallel Scaling. Schroeder and Gibson [2] have
done extensive work in exploring failure data sets on exist-
ing large computational platforms. Their research shows that
hardware failures account for more than 50% of node outages
experienced over a 9 year period on 22 HPC systems at Los
Alamos National Laboratory (LANL). They also show that
failures increase as the number of CPU sockets in a system
increases. They further make the case that it is likely that
aggregate computational power for the foreseeable future will
come from just such increases. Their exploration of current
and alternative checkpointing techniques and associated pros
and cons parallels those of others such as Oldfield [3]. All
such work seems to draw the conclusion that current fault
tolerance techniques, namely checkpoint and restart, in their
current form coupled with the seemingly fixed relationship
between number of CPU sockets and MTTI imply that run
time efficiency will continue to fall as computational platforms
become larger. While they all propose schemes that could
increase the checkpoint and restart efficiency given some
constraints on memory footprint on nodes and I/O bandwidth
growth, there seems to be agreement that the per socket fault
rate will hold steady.

There has also been work by Gottumukkala et al. [4] on us-
ing historical failure data from a particular platform to quantify
reliability of nodes on that platform. This reliability data would
in turn be used to drive application decomposition and node
allocation in order to optimize job run time. The Coordinated
Infrastructure for Fault Tolerant Systems (CIFTS) [5] initiative
seeks to construct an extensive fault aware framework in order
to address these through more open communications between
all system components.

In contrast to these efforts, our research seeks to increase
the MTTI for an application by hand picking, as it were,
components whose relative probability of failure is minimized
given the number of nodes requested, expected runtime, and
available resource pool. We seek to quantify failure distribu-
tion characteristics as they relate to the real-time statistical
distributions of parameter values of compute elements. Such
characterizations would allow us to identify run-time system
degradation issues without requiring extensive historical or
platfrom specifc data. We believe that using this methodology
can drive down the hardware fault related application interrupts
on applications.

III. TECHNICAL APPROACH

We take a statistical approach to detection of elements
having anomalous behavior. Since today’s HPC systems have

aggregations of thousands of identical components our ex-
pectation is that these components should behave similarly
under within a similar environment. Our approach then is
to statistically characterize how these elements behave and
identify statistical outliers as elements being more likely to
fail. In previous work [6] we have shown that for some
problems this type of identification can indicate problems
before they reach the failure stage.

Our approach then to this problem is to provide the low level
element characterization tool and an interface for communi-
cation between it, the application, and the scheduler/resource
manager. In this section we describe OVIS, our tool for element
characterization, and our characterization methodology; we
present motivations for our statistical characterizations to be
used as the basis for resource usage decisions; and proposed
interactions between Application, Scheduler/RM, an Alloca-
tion Evaluator, and OVIS.

This methodolgy allows us to target nodes based upon their
component paramaters distribution characteristics, whether or
not the parameter is known to be directly indicative of future
failure or not. This is significant for dealing with cases where
the causes of failure of a component are not well understood,
or where the component is degrading in a way that is not
reflected in historical failure records, such as due to aging or
changing environmental conditions.

A. OVIS

This section first briefly describes our data collection and
analysis engine. Next we cover its associated data collection
mechanisms and the type of data currently being collected.
Finally we cover its analysis engines’ functionalities and how
they can be used to characterize system element attributes.

OVIS [7], [8] is a distributed tool for scalable data collection
and analysis. It is able to use both historic and run time
data to characterize reportable cases in statistical and/or
probabilistic terms, such as descriptive statistics, correlations,
and parametric Bayesian models. In particular, on the basis
of such characterizations, historic and run time data, each
element’s degree of “abnormality” can be quantified based
on where it lies relative to an applicable model. The set of
currently available analysis tools, a.k.a. haruspices1 is by no
means limitative; in fact, other haruspices are currently under
development but are not discussed here. Currently a person
setting up the analyses on a system specifies in terms of
variance what they want defined as an “outlier”. OVIS returns a
running list of “outliers” which is updated whenever new data
arrives. The distributions and models can also be dynamically
modified to represent how new data may have modified them.

1) Data Collection: Getting data with which to characterize
system elements is critical to this scheme. Since it is unknown,
even by the system vendors, what characteristics of what

1Partially quoting the Wikipedia Haruspex entry: “In Roman practice
inherited from the Etruscans, a haruspex (plural haruspices) was a man
trained to practice a form of divination called haruspicy, hepatoscopy or
hepatomancy. Haruspicy is the inspection of the entrails of sacrificed animals,
especially the livers of sacrificed sheep.”



elements are critical in diagnosing system health, we attempt
to collect as much data as possible with as high a frequency
as possible. Our hope is that we will be able to discover
critical health metrics and an optimal collection frequency
that will be a small subset of what is possible. Currently,
depending on platform, we collect voltages, temperatures, fan
speeds, NIC, and SMART disk controller data. These data are
collected via SNMP, IPMI, in band, and proprietary samplers
with a periodicity ranging from once a second to once an
hour. If, however, this technique shows promise we envision
having a standard set of metrics that we would approach the
HPC vendors about exporting using a standard out of band
mechanism.

2) Element characterization methodology: A problem with
the traditional HPC system monitoring tools is that they only
provide information when a fault has already occurred or a
critical threshold has been crossed necessitating a management
system forced fault (e.g., a shutdown or reboot). In either
case the information is too late and the only useful outcome
of having a management system at all is that it can cause
the scheduler/RM to kill and restart the job as opposed to
having it possibly hang until it times out or the owner notices
it hasn’t made progress. OVIS by contrast uses a variety of
analysis engines to characterize the element’s parameters in
probabilistic terms based on their statistical distributions given
their environments. The advantage of this is that, for failures
that are evidenced by degradation in some element parameter,
a measure of relative probability of anomalous behavior can be
used to estimate stability of the element. Thus not only can the
system be used to identify probabilistic outliers but conversely
can identify relatively normal or well behaved elements for use
in an application run. One of the goals of the OVIS project
is to be able to quantify the probability of failure in a given
time window for an element based on where it lies relative
to its reference distribution and historic failure data of such
elements. Thus a simple example would be that an application
requesting 1000 nodes for 1000 hours might be handed nodes
from a current free list starting with the one whose parameters
weighted distance from the mean is the minimum and working
out from there. Conversely an application requesting 10 nodes
for an hour might well be handed the 10 whose parameters
weighted distance from the mean was the greatest without
being categorized as an outlier (outliers, being defined as
elements whose paramenter values lie outside of acceptable
bounds with respect to a reference model or distribution, would
be removed from the “available resource pool” by the resource
manager).

Additionally, unlike the afore mentioned traditional mon-
itoring systems, since OVIS can track the runtime status of
these parameters relative to their reference distributions and
their starting point, it can notify the application of increased
probability of failure based on a shift. This would allow the
application to checkpoint a particular node’s data and request
a replacement upon completion of the next time step. If, with
the addition of historic failure data, one can correlate distance
from mean of some reference distribution with quantification

of failure probability in a time window then not only could the
scheduler be given the information to hand an application the
currently optimal set of resources but the application could re-
adjust its checkpoint frequency based on the allocated resource
characteristics.

3) Analysis engines: Data analysis in OVIS 2 is conducted
by the means of statistical engines, or haruspices, that can
operate in parallel in order to address large data sets. The
execution mode of these haruspices – in other words, the types
of tasks that such engines may perform – can conceptually be
classified as follows:

• Learn: in this mode, data is viewed as an absolute
reference, from which a model is calculated or inferred.
Such a model can take several forms, such as moments,
estimators, PDF, etc.. The output of this execution mode
is thus a model, or, more specifically in the context of
OVIS 2, the most likely set of parameters of the model
given the training data.

• Validate: here, data is still viewed as an absolute refer-
ence, but a model is now available; the goal is then to
assess – and this assessment can be conducted in a variety
of ways – the adequacy of this model to the data. The
validate mode thus outputs the result of this assessment.
Note that this can, but does not have to, be a number.

• Monitor: the roles are here interchanged with those of
the learn mode: the unquestionable reference is now the
model, with respect to which data is inspected. The output
of the monitor mode is a collection of reportable cases,
described in a way that allows for unambiguous and
efficient retrieval of the particular components and times
to which these correspond, when available; the output
may also be presented as an ordered list so as to reflect
a gradation in severity or abnormality of behaviour. Note
that reportable cases may occur either when a particular
event diverges from the model more than what has been
set as acceptable (as is the case with the three haruspices
detailed below), or because no (or fewer than expected)
events of a particular type occurred. For instance, outliers
– which may be defined in several ways depending on the
type of model being used – can be identified as elements
of the data set that deviate from what the model predicts
within pre-defined acceptability bounds.

Within this abstract framework, OVIS 2 currently implements
three haruspices. Note that not all of them implement each
of the three conceptually possible execution modes. These
haruspices are:

• Descriptive statistics: this haruspex offers learn, and
monitor execution modes. In learn mode, descriptive
statistics are calculated (estimators of the mean, standard
deviation, skewness, kurtosis, as well as bounds) in order
to provide a purely descriptive statistical characterization
of the data set of interest. This information can be used
per se, or be fed into the monitor mode, or be used
elsewhere than within the descriptive statistics haruspex
– for example, as a helper to specify priors for Bayesian



parameter estimation. In monitor mode, the user can
specify purely descriptive parameters – which may or
may not come from an earlier execution of the learn
mode – such as: nominal value and acceptable deviation
wherefrom, and acceptable range. In particular, this mode
enables outlier detection for two possible definitions (and
use cases) of this concept: namely, variation from a
value considered as “correct” or “normal”, and thresh-
olding. The latter use case alone replicates what current
cluster monitoring tools typically offer. Note that there
is currently no validate mode for descriptive statistics
haruspices – but there may be one in the future.

• Correlative statistics: this haruspex is purely contem-
plative at this point, since it currently only implements
the learn execution mode: the goal is here to evince
linear correlation between two different metrics. This is
especially useful to prevent the user from conducting
more advanced – and costly – analysis such as running a
Bayesian engine when linear correlation between metrics
can be evinced. Even though a monitor mode has not
been implemented yet, it will be the case soon since it
is potentially of great interest to be able to report when
2 correlated variables begin to decorrelate – or, the other
way around.

• Bivariate Bayesian: this haruspex implements all 3 exe-
cution modes within the context of parametric Bayesian
inference modeling. For instance, in learn mode, the
parameters of a probabilistic model that describes the
dependency of a metric on another are inferred from
the input data viewed as training data. In that mode, a
parametric model as well as a prior must be provided to
the haruspex before the calculation can proceed; the de-
scriptive and correlative haruspices become here typically
useful since they allow to user to come up with a “first
cut” that is not completely uninformed – thus ensuring
faster parameter identification and/or better accuracy. In
validate mode, the haruspex conducts the comparison of
the data of interest vs. the provided model along with
a set of parameters, and returns a number that can be
interpreted either as a sign that the model is not valid
in this context (if one “trusts” the data – or defines as
the norm for instance during a calibration process), or
as an indication that the data as a whole is problematic
(if one “trusts” the model instead – for instance if it has
been inferred under comparable conditions). Finally, the
monitor execution mode calculates the likelihood of the
data as it is sifted through the model with its parameter
values provided as an input, for instance after they have
been calculated in learn mode with “trustable” training
data. For concision, the details of this methodology are
not provided here, since this is clearly outside the scope
of this paper, and only a brief illustration is presented
in Figure 1. Meanwhile, the interested reader will find a
complete explanation (in the context of OVIS 1) in [7].

Fig. 1. Probabilistic model for CPU Temperatures in a particular rack in a
particular cluster. The model consists of a quadratic mean as a function of
relative height, with a Gaussian noise term about the mean. The parameters
of the quadratic function and the standard deviation of the Gaussian are
determined by bivariate Bayesian inference.

B. Statistical Characterizations for Resource Management
Decision Support

We seek to utilize the statistical characterizations in order
to make resource management decisions. As mentioned previ-
ously, our statisical methodolgy allows us to target nodes based
upon their paramater distribution characteristics, whether or
not the parameter is known to be directly indicative of future
failure or not. If a particular parameter has not been con-
clusively tied to a failure mode, a node exhibiting statistical
irregularly in that parameter can still be assigned to short-lived
or low-priority jobs, for example, short initial test runs. Failure
associations can then be discovered without pre-emptively
taking any such nodes out of the pool, but with minimal impact
to the higher-value jobs.

We list some examples of run-time statistical characteriza-
tions that we have performed that can be used to assist in
resource management decision support. These are pre-failure
diagnostics and would not be caught by methodogloies relying
on historical failure data logs.

1) In our analysis of a particular HPC platform at Sandia, by
using the descriptive statistics engine, we found that voltages
of several thousand like components had approximately nor-
mal distributions overall. There were, however, consistently
two statistical outliers, one six standard deviations from the
mean and the other ten. There is currently no known rela-
tionship between this voltage abnormality and failure. In our
proposed system, since there is the possibility of timing or
other problems resulting from the deviations we would keep
these nodes in the resource pool to be used for known short
lived jobs. In addition, we would continue to actively monitor
these nodes to see if this parameter can be used as an indicator
of impending failure. If so, then in the future, nodes having
significant outlier characteristics in this parameter might then
be removed from the pool entirely.

2) In another example we found a node having a CPU



which, under load, had it’s temperature fall five standard
deviations below the mean of it’s reference model. While this
may not seem bad given that low temperatures (above the
dew point) are generally viewed as good for the longevity of
electronic components, it turned out to be indicative of a fan
controller failure.

3) Getting disk data on the storage appliance we are
monitoring via the SMART ctl we will be able to detect
the gradual degradation of all spindle bearings based on the
reported time to spin up. If one should degrade faster it would
become an outlier and viewed as a less reliable component.
This would result in a hint from the underlying monitoring
system to applications as to its degraded degree of reliability.

C. Application, Scheduler/RM, OVIS interaction

This is in the planning phase and we are currently writing a
proof of concept implementation and collecting reference data
on several platforms. We describe here the currently planned
architecture.

Fig. 2. Diagram of proposed interaction of Application, Sched-
uler/ResourceManager, and Analysis/Monitoring System (OVIS) by which an
application submission can specify job requirements, a statistical analysis is
done to determine nodes that will best satisfy that request in context of all
the other jobs in the cluster, and the job allocation will occur.

A block diagram of interaction is illustrated in Figure 2.
An application request can specify job requirements to the
scheduler/RM. The requirements can be as simple as expected
runtime, or if supported could include other requirements
such as minimum acceptable MTTI. These more advanced
requests would of course require something downstream to
have access to applicable data coupled with the ability to
perform the required calculations. The scheduler then passes
the requirements on to an Allocation Evaluator. The Allocation
Evaluator can query the Analysis System for relevant statistics.
In the case of a high priority, long lived job, this may translate
into a request for nodes with parameter characteristics closest
to the mean of the distribution for a number of element
parameters. The Analysis System supports an API by which a

probabilistic distribution of nodes with respect to the requested
constraints can be requested and returned. The Allocation
evaluator can then weigh the returned statistics in order to
determine the node allocation to recommend to the scheduler.
In the event that there are not enough statistically satisfying
nodes available, a job could be held until more satisfying
nodes become available. An upper bound on this time could
be determined by the current node allocation and current job
time limit.

In Figure 2, dashed lines indicate pieces or interactions in
development; solid lines indicate pieces or interactions which
are currently in existence. Our Allocation Evaluator is a script
that is evoked in the scheduler’s prologue script. It currently
passes the request to the HW Analysis system and chooses
nodes either from “best to worst” or “worst to best” based on
a requested node hour threshold. We currently define an API
for invoking and returning descriptive and correlative statistics
within OVIS.

The proof of concept system can determine and report
system degradation to enable preemptive resource reallocation.
This is illustrated in Figure 3. In this case, we are given
a set of statistical requirements that the HPC system must
satisfy in order to be considered in good health. The Analysis
and Monitoring System calculates running statistics on the
quantities of interest and report when the statistics have
changed in a way that indicates system degradation. This
information can be reported to the scheduler and these nodes
taken out of the assignable pool of nodes. Applications that
provide an interface for checkpointing can be instructed to
checkpoint, or checkpoint more frequently, when degradation
occurs.

Fig. 3. Diagram of proposed interaction of Application, Sched-
uler/ResourceManager, and Analysis/Monitoring System (OVIS) by which
system degradation can be determined and used to perform resource real-
location.



IV. PRELIMINARY FINDINGS

We currently have prototype deployments of the OVIS
monitoring and analysis system on several production HPC
systems at Sandia National Laboratories. Though we don’t
have enough failure data to make correlations between fail-
ures and the failed node characteristics with respect to their
reference models and/or distributions, we have been able to
quantify a measure of relative probability for node related
element parameters. We are able to query for lists of nodes
based on how far a particular parameter for each lies from the
mean of that parameter’s reference distribution. We can also
discover shifts in the distribution’s characterisitics and shifts
in a particular node’s relative position within that distribution..
We also have a prototype deployment on a storage appliance
from which we are able to, in addition to the node level
information, get disk operation parameter information. Since
we retain all of the data we can, as failure data comes in, start
to do correlative analysis between failures and the underlying
hardware characteristics.

V. FUTURE WORK

We are currently working on a time series analysis engine
which will be part of this framework. This will allow temporal
charicterization of system parameters with respect to the
particular application utilizing the elements being charcarized.
We would like to expand the scope to include detection of
elements exhibiting abnormal temporal behavior with respect
to the similar elements participating in a particular application
run. Along these same lines we would like to explore how
different application input parameters affect this behavior.

Additionally we would like to explore taking into account
an applications dominent communication patterns when doing
node allocation so as to optimize run time application perfor-
mance. I/O and storage component usage for an application
could also be driven by requested storage hardware hints
requested by the application and passed to it.

VI. CONCLUSION

Though we are seeing an explosion in node counts in
new HPC platforms the failure rate of individual components
seems to be staying constant. This combination is driving the
system MTTI down thus burdening applications with the ever
increasing overhead of higher checkpoint frequencies which
in turn decreases the computational efficiency. We present a
scheme for changing this trend by driving the effective MTTI
back up through hardware level monitoring, analysis, and
characterization. Since, according to studies over a significant
number of platforms, greater than 50% of these interrupts are
due to hardware faults we believe this approach can have a
significant impact.
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automated statistical analysis of large computational clusters,” in IEEE
Cluster 2005, Boston, MA, Sept. 2005.

[7] J. M. Brandt, A. C. Gentile, D. J. Hale, and P. P. Pébay, “OVIS: A tool
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