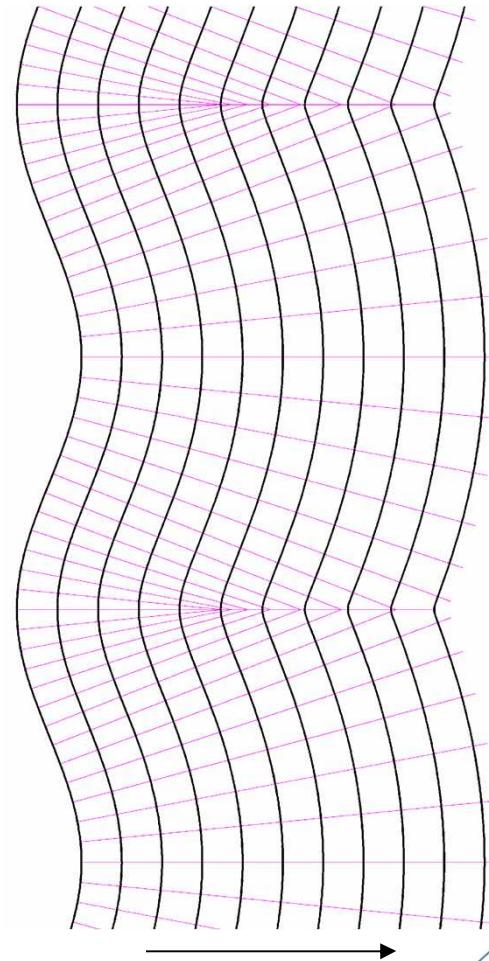


98TH STATISTICAL MECHANICS CONFERENCE
RUTGERS UNIVERSITY

Front Propagation in Random Media: An Application of Burgers Turbulence and Directed Polymers


Jackson R. Mayo and Alan R. Kerstein
Combustion Research Facility
Sandia National Laboratories, Livermore, CA

18 December 2007

The U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences supported this work. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-AC04-94AL85000.

Huygens' principle idealizes the physics of front propagation

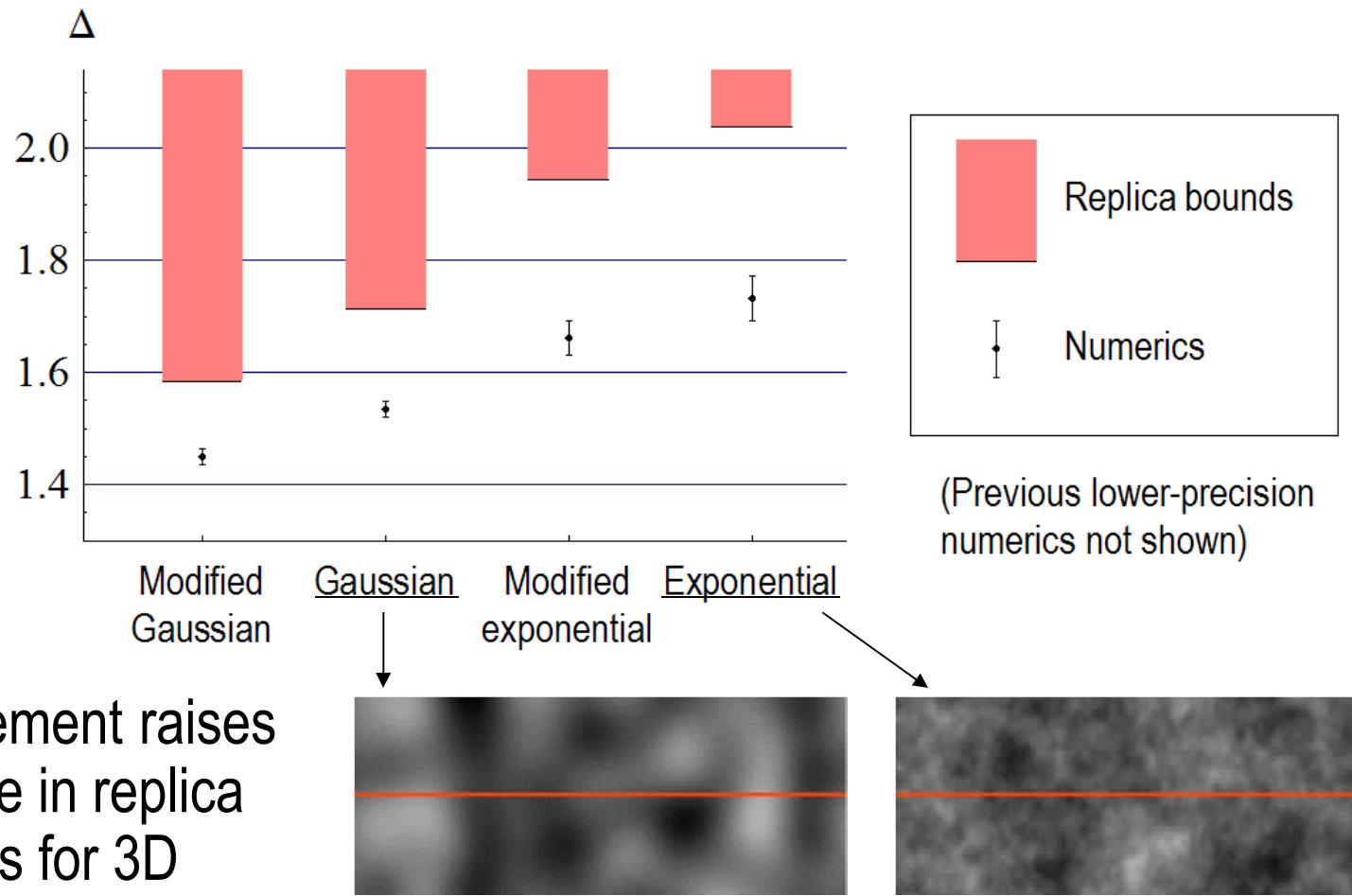
- Many phenomena (light, sound, combustion) spread at a characteristic speed
- A “front” comprises points to which the fastest path (first passage) takes time t
- The leading paths are “rays” perpendicular to the front
- Concave regions shrink to “cusps” that consume rays and flatten the front
- Random variations in local speed wrinkle the front and increase its surface area, resulting in faster propagation

Weak perturbations can be rescaled into white noise, making widely studied models relevant

- In a medium with local speed $v(\mathbf{x})$, a path's travel time $t(C) = \int_C ds/v(\mathbf{x})$ looks like the energy of a stretched string in a random potential
- Huygens propagation gives the absolute minimum energy (zero temperature); the finite-temperature free energy corresponds to smoothed cusps
- Weak randomness is described by the rms value $\epsilon \ll 1$ and normalized spectrum $D(k)$ of relative fluctuations in $v(\mathbf{x})$
- Front evolution occurs over a large distance $\propto \epsilon^{-2/3}$; a longitudinal rescaling transforms the medium into white noise with transverse spectrum $D(k)$, and extracts $\epsilon^{4/3}$ scaling of the speedup (which can be interpreted heuristically)
- The string becomes the standard directed polymer with longitudinally white potential, equivalent to the Burgers equation stirred by a white-in-time force
- The correspondence elevates these “toy models” and motivates detailed calculations of their nonuniversal properties

The replica method reduces the problem to the variational quantum mechanics of zero particles

- The front speedup is $\Delta \epsilon^{4/3}$, where Δ is minus the directed polymer's free energy per unit length (equal to the energy density of the Burgers fluid)
- The free energy is proportional to the logarithm of the partition function Z and can be averaged over the noise using $\ln Z = \lim_{n \rightarrow 0} (Z^n - 1)/n$
- $\langle Z^n \rangle$ is the partition function for n interacting polymers, and also the imaginary-time Feynman path integral for an n -particle nonrelativistic quantum Hamiltonian \mathcal{H}_n with a pair potential
- If the quantum ground-state energy $E_g(n)$ can be analytically continued in n , then $\Delta = -\lim_{n \rightarrow 0} E_g(n)/n$
- A variational bound on $E_g(n)/n$ is found using Gaussian wave functions ψ with hierarchical symmetry breaking, described by a function $z(u)$ on $[0, 1]$
- Stationarity of $\langle \psi | \mathcal{H}_n | \psi \rangle$ yields a solution for $z(u)$, generalizing Blum (1994), and an explicit expression for the bound on Δ at zero temperature


An explicit formula allows calculation of replica bounds and reveals their underlying structure

- For certain media, including those in $d = 2$ with “Gaussian” $\exp(-r^2)$ and “exponential” $\exp(-r)$ correlation functions, the bound is

$$D \leq \frac{1}{2} \int_0^z \frac{P(z')}{z'^{1/3}} \left(\frac{1}{2} \int_{z'}^z \frac{P(z'')}{z''^{1/3}} \left(\frac{1}{2} \int_{z''}^z \frac{P(z''')}{z'''^{1/3}} \left(\frac{1}{2} \int_{z'''}^z \frac{P(z'''')}{z''''^{1/3}} \right)^{1/2} \right)^{1/2} \right)^{1/2} dz''' dz'' dz'''' dz''''''$$

- Other media require specific modifications to the bound formula
- $P(z)$ is the power in an order-unity spectral band around $k \sim z^{-1/2}$
- The front propagation speed is successively renormalized by each finite band's effective $\epsilon^{4/3}$, reflecting a coarse-grained front in a marginally steady state
- Broader spectra have larger Δ because the power is spread over more bands and the $2/3$ exponent gives small power a disproportionate effect
- Previous speed-renormalization calculations obtained misleading results using infinitesimal bands

Numerical simulations confirm that 2D replica bounds are valid and reasonably sharp

Conclusion: Weak-perturbation first passage is now well understood theoretically

- A weakly perturbed Huygens front reduces to an inviscid Burgers fluid driven by white noise, or to the zero-temperature limit of a directed polymer
- In the process, the $\epsilon^{4/3}$ scaling of the front speedup is extracted
- The prefactor of $\epsilon^{4/3}$ is analytically bounded above using a replica analysis that is equivalent to bounding the energy density of Burgers turbulence and the binding energy of the directed polymer
- Replica results for 2D propagation match within $\sim 15\%$ the speedup values obtained numerically (new evidence that replica bounds are valid and usefully sharp)
- The success of the replica method implies applications to weakly random optics and acoustics, as well as weakly turbulent combustion
- Finite-band renormalization may lead to improved turbulent-combustion models beyond weak perturbations