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Abstract

This article constitutes a “report from the field” on a
decision aid / fusion system with a foundation in reasoning
from a heuristic based perspective of philosophy. While the
system employs multiple components of Peirce’s ‘method of
scientific inquiry’, the focus of the article is the inductive
learning engine. Within a Peircean reasoning engine,
induction is the work horse of reasoning functions.
Induction is a form of reasoning in which a sample is used
as a representation of a much larger population. It is an
approximate form of reasoning. It serves as a hypothesis
validation mechanism, as a reasoning algorithm and it
supports learning and the modification of knowledge. The
capability discussed in this note focuses on the extension of
Finn’s methodology to define a learning algorithm that
supports a comprehensive Peircean reasoning engine.

Introduction

Development of fusion or decision support systems
requires the integration of reasoning capabilities into the
system solutions. This report documents the inductive
learning sub-system of a decision aid we have developed at
Sandia. The system architecture provides a foundation for
an integrated reasoning system based on C.S. Peirce’s
method of ‘scientific inquiry’ which includes abduction,
deduction and induction. Theories of human information
processing can be found in the fields of cognitive
psychology, neural-physiology or in philosophical
theories. Modal logic and philosophy provide a heuristic
assessment of the functions of human reasoning at an
engineering level. The neural-physiological models are the
‘physics’ of human cognitive functionality, defining the
electrical-chemical dynamics of the processes associated
cognition. Engineering a solution to this information
processing problem necessitates an understanding of the
heuristics of reasoning. As in thermodynamics, the ‘laws’
of heat transfer between bodies are a heuristic
representation of a molecular phenomena and are used in
engineering solutions to the flow of energy in materials. In
order to understand the physics of this energy transfer
process requires an understanding of statistical physics.

Reasoning consists of the trained and/or ad-hoc process we
use to solve problems. Within the context of our
development, abduction provides the basis for hypothesis
generation when new data/information enters our
awareness. Deduction is the engine that supports the

hypothesis selection process and induction becomes the
hypothesis verification process. In addition, induction
supports the functions of approximate reasoning and
learning, which seems to be an innate human capability.

A brief description of the knowledge representation
technology is provided in order to establish the foundation
on which the mathematics of induction is constructed. The
focus of the paper is the mathematics of inductive learning
and the applications of induction as implemented in the
Peircean decision aid.

Supporting Architecture

The application domain supports decision aid development
in which data/information is convolved with knowledge to
create a belief state, a theoretical interpretation of
situational awareness, which forms the basis for making
decisions. = The mathematical foundations of formal
concept analysis provides a foundation for developing sets
of operators that define the functionalities of our reasoning
system.

Formal concept analysis (FCA), developed by Ganter &
Wille (Ref. 4,5), is based on ordered set theory and uses
lattice theory as a rich technology for visualizing
information and knowledge. FCA is based on the idea of a
formal context, Krc, defined by a ‘triple’ as the one in
equation 1.

Kwe = (G, M, ) Eqn 1

In this equation G and M are sets of objects and attributes
respectively and I is a binary relation between the two sets.
Within our problem domain we have refined the relation
operator, I, to be a set of relations, each member
corresponding to a specific predicate in the information
domain.  This permits us to assign some descriptive
property to the binary relationship between the objects and
attributes.

There is an operator, symbolized by (-)’, which aids in the
definition of formal concepts from the formal context.
Ay ={me Mlgme LVg € A}

Eqgn 2
(B =g € Gllg.m)E I Vm < B) an

In equation 2, the operator action on the object set A
produces the set of attributes common to objects within the
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‘A’ set. Likewise, application of the operator on a set of
attributes ‘B’ produces the set of objects which posses
those attributes in common.

A construct from FCA that we will need later in the paper
is the idea of a Begriff. Within FCA the ‘context’
constitutes a unit of knowledge / information and forms the
basis of a lattice. A concept is a set of sets, (A,B), in which
A is the set of objects and B is the set of attributes common
to that set of objects. The prime operator defined above is
the operator that defines the mapping between the two sets.

The Begriff is the set of all concepts of a context. The set
of concepts can be defined by an application of the ‘prime’
operator discussed in the previous sections. The first step
in defining the Begriff is to define an attribute set
consisting of the intent of a context. The power set of this
attribute set provides the basis set on which the prime
operator is applied to produce the extent of all concepts in
a context.

S = {Intent} jma contert
P. = {p} = {P(S)} Ean 3
B = {2, {) '} (b))

P represents the power set of the contexts intent, and B is
the Begriff which is a partially ordered set of concepts
without duplications that may result from the process of
applying the ‘prime’ operator on each member of the
power set.

A procedural approach to defining a Begriff can be found
in Davey & Priestley’s (Ref. 2) book. This approach relies
on a process that uses a series of set intersections as the
context is processed. The effect is the same while the
equations above are a rigorous interpretation of the process
described.

Induction

A summery paper by Evan Heit (Ref. 6) provides a nice
analysis of induction from a psychological perspective.
There work focused on the evaluation of inductive
arguments of a form given in equation 4.

Given a premise
The conclusion must follow

Eqgn 4

In a deduction logic, if the premise is true the conclusion
must be true, the inductive logic introduces an uncertainty.
If the premise is true the conclusion is expected to be true.
The psychological studies discussed in the review paper
explored a number of factors associated with the argument
and assessed the strength subjects placed on the
conclusions.

The article describes conditions associated with good
cases, sets of cases and properties for inductive reasoning.
The examples they use are presumed to be single premise
cases. As an example they discuss examples such as:

Nearby houses were burgled
My house will be burgled

vs. Eqgn 5

Houses 50 miles away were burgled
My house will be burgled

The first case leads to a stronger induction than the later in
the study. They provide similar cases for problems
involving animals described to exist on an isolated island
in order to attempt some form of knowledge constraint. It
seems that, what has been missed is an implicit multi-
premise induction being performed. this ‘implicit’ set of
premises was not captured. Subjects bring prior
knowledge into the problem and evaluate the strength of
the inductive arguments based on this knowledge.
Effectively things such as; “ ...50 miles from here is a large
city with a high level of crime, my neighborhood lies in a
very safe area so the likelihood of my house being burgled
is low”.

Similarly the animal examples fail to take into account the
fact that we possess varying levels of biological knowledge
and recognize that premise and conclusion involving
species from a similar order may possess common
anatomical characteristics or susceptibilities. Their
discussion of ‘property’, reflects a similar issue. Certain
classes of predicate carry varying levels of prior
knowledge or meaning and impart varying levels of
strength to the inductive arguments. Their example uses
the predicates ‘thrives’ versus ‘secretes’ one which is
qualitative in nature while the second has a foundation in
biology. The bottom line for me is the experiments
discussed could not be considered single premise
experiments with results drawn based on that supposition.

The discussion of sets of cases was of more interest in that
it focused on the numbers and the diversity of the premises
category. The greater the number of examples supporting a
conclusion adds strength as does the greater the diversity
of the examples (premises) in the inductive argument. It
would seem that this is getting closer to the nature of
induction and the inherent statistical character of the
problem. Within the area of case sets no results dealing
with counter examples was explored, This may be due to
the single premise constraint imposed on the experiments.
In this situation, the set of attributes and corresponding set
of objects can represent instances that would result in both
true and false conclusions.

Theoretical foundations

Within the domain of philosophy a significant body of
research exists that addresses induction. The work used as
the foundations for the Sandia decision aid is based on
Peirce’s modal of reasoning (Ref. 9, 10, 11) coupled to the
work of V. Finn (Ref. 1, 3). Peirce defined induction ‘...as
a form of reasoning from a sample to the whole sampled.’
‘Induction is the mode of reasoning which adopts a
conclusion as approximate.” Peirce indicated that there



exists three kinds of induction all based on random
samples. He seems to have used different terms for these
types of induction but in general they consisted of a weak
form, a strong form, and the ‘gradual’ form.

The strong form of induction consists of a sample or
collection from a population in which it is possible to
assess the proportion of the members of that population.
The weak form deals with statements that could be
disproved if a single counter example existed; e.g. ‘liberals
are intellectually bankrupt’. The third form of induction,
gradual, is similar to the first form due to its quantitative
nature. In this case an estimate of the population
proportionality is made but each new sample acquired goes
toward updating the proportions in the population.

Inductive Reasoning

Reasoning research in Russia has produced some very
interesting results in which FCA is used as a knowledge
representation technology and theories of abduction and
induction have been developed. The work of V. Finn and
V. Blinova(Ref. 1, 3) have used J.S. Mills (Ref. 8) canons
as the guiding principles in developing a theoretical modal
of inductive reasoning. Mills canons have been described
by various researchers, as a set of inductive principles, a
set of abductive principles and defined as principles
describing causal reasoning. It seems that, in part due to
ambiguities in definitions, that Mills canons have elements
of each category.

Finn’s (Ref. 1, 3, 7) work focused on the first of Mills five
canons. His effort focused on an inductive ‘learning’
algorithm which may more accurately be characterized as
an inductive reasoning algorithm.

Mill’s (Ref. 8) canons consist of : the ‘Method of
agreement’, ‘Method of differences’, ‘Indirect method’,
‘Method of concomitant variation’, and the ‘Method of
residues’. The description of the first canon used in Finn’s
algorithm was taken from Mill’s System of Logic.

The first canon: If two or more instances of the
phenomenon under investigation have only one
circumstance in common, the circumstance in which
alone all the instances agree, is the cause (or effect) of
the given phenomenon.

Finn’s implementation of the first canon involves
considering positive and negative examples of an objective
that draw from a single set of attributes, and one or more
unknown examples. The objective is to classify the
unknowns according to the reference sets. The model
develops a Begriff for the positive and negative example
sets, then uses the concepts in each Begriff to classify the
unknown examples as either a positive, negative or as an
indeterminate.

The example in Blinova’s paper consists of the positive
and negative sets in equation 6.

gr = {a,b,c}
g: = {a,b,d} g5 = {a,c,d}
o Eqgn 6
gi = {a,b,e} gi = {b,c,d}
gi ={a,c,e} g7 ={a,d,e}

The extra intent sets of the positive lattice consisted of
{a,b}, {a,e}, {a,c}, and {a}. The extra intent sets of the
negative lattice consisted of, {c,d}, {a,d}, and {d}.

The set of unknowns is defined in equation 7.

gi = {a,b,c,e}
gi = {c.d,e} Eqn7
g;() = {a’bic9d}

Finn’s method classified the first case as a positive
example, the second as a negative example and the third as
indeterminate due to both positive and negative intents
being subsets of the example intent.

The one aspect of Finn’s method that I think needs
modification is the heuristic imposed on the positive and
negative lattices. Finn requires that there be ‘2’ or more
examples in a concept before it can be classified as a
positive or negative concept in the respective lattices.
From a theoretical perspective, imposing a heuristic goes
against the grain. This constraint is better suited for
implementation in the engineered solutions where we
might wish to establish a bias toward false positive or false
negative classifications.

Inductive Learning

An excellent foundation for inductive reasoning has been
established by Finn’s work with Mill’s first canon. In our
implementation we have opted for an inductive learning
system as opposed to the reasoning implementation. The
algorithm builds on Finn’s work with minor modifications
and extensions. In Finn’s work he defines a positive and
negative lattice to use in the classification process. We
needed to learn in situations in which the context possessed
an arbitrary number of goals. E.g. the terrorist incident
database 1 used contained over 30 groups which
represented the goal attribute. The algorithm developed is
provided in the next paragraphs.

The algorithm begins by accepting the entire training set.
In the example to follow a subset of the State Dept. terror
incident database was used. The incidents covered a
period from 1992 to 1998. The attributes describing the
incident include; {date, location, target, tactic, result,
organization}. Organization is the goal attribute. A Begriff
is defined for each goal attribute in the training set. These
Begriffs constitute the positive lattices defined in Blinova’s

paper.



Bk = (Ak’Bk)‘ Ak - A; Bk = (Ak)'
with
k = goal attribute

Egn 8

The first adjustment occurs in the construction of the goal
oriented Begriffs. Engineering factors are introduced to
bias the ultimate algorithms toward false positives or false
negatives. This is done by setting likelihood thresholds to
some fraction of ‘1.0°. This translates into the number of
examples associated with a concept in the lattice. We can
require that for a positive example we require two or more
examples or in the case of counter examples two or more
examples to reflect a counter instance. The next step of the
algorithm is to define the resultant classification Begriff
after any counter examples are removed from the goal
Begriff.

B, = Bi— 2 B, Egn 9

m+k

In expression 9, B* represents the positive classification
Begriff for a goal attribute, in our test problem this might
be the group HAMAS. The Begriff class B~, represents the
Begriffs containing the engineering bias adjustments. The
resultant becomes the basis for the new classification
context that will be constructed by the next steps.

Each concept remaining in the classification Begriff, B*,
represents positive examples for identifying a specific
objective. A concept, C = (A,B), represents a set of
examples and the associated set of identifying attributes.
The new object (the former goal attribute) consists of all
remaining attributes after the operation in equation 9. This
resultant set of attributes is the union of the intent of all
concepts remaining in B*. After each new object is
defined from the learning sets, they are added to a new
context representing a new knowledge domain.

The next step involves constructing a new context Begriff
and estimating a set of concept likelihoods that can be
interpreted as a metric for assessing the appropriateness of
sets of attributes being used as a defining attributes. We
can readily define a likelihood of a set of attributes
associated with a concept, what we are doing is assuming
we can attribute that concept likelihood to each of the
attributes comprising that concept. The mathematics of
estimating the likelihood for each concept is defined in
equation 10.

Ihi,, = SizeOf(C,.r ) | SizeOf ( By) Eqn 10

In expression 10, m is a concept index in the classification
Begriff k. SizeOf(.) is a function which determines a size
metrics in a Begriff, basically the number of objects
associated with the argument, either the Begriff or the
concept in this case.

The final classification context captures the essence of the
training set in which each goal attribute is an object in the
constructed classification context with each concept
assessed for likelihood as a discriminator for an object in

the newly constructed context.

Engineering implementation

The Peircean decision aid incorporates 3 basic thresholds
in the construction of knowledge that will be integrated
into the knowledge base. Two of these thresholds apply to
categorized or pre-defined knowledge and to inductively
generated knowledge. Attributes that are defined with a
probability of being a attribute associated with an object as
well as real valued attributes that have gone through a
fuzzification process can be pre-screened for inclusion as a
descriptor. E.g. if the probability of being a descriptor is
less than 0.25 it is removed from consideration as a
descriptive attribute within a context.

The second type of threshold is associated with the
inductive learning algorithms using the likelihood
estimates in equation 10. This 2nd class is used to bias the
system toward false positives or false negatives in the
construction of the positive and negative Begriff’s in the
Finn inspired inductive learning model. In the case of the
positive Begriff, the threshold sets a lower limit on which
concepts can be considered good examples of the objective
being classified. When a certain grouping of attributes
does not emerge as a descriptor often it is effectively
considered an outlier. In the case of the negative Begriff,
we are looking for numerous occurrences of a particular
attribute grouping to use as an indicator of a negative
example of the objective goal. The criteria are structured
such that a high threshold value for either the positive or
negative thresholds effectively require greater number
occurrences of either positive or negative examples.

Initial Application

The focus of this application is to provide decision support
capabilities and / or augment the efforts of an intelligence
analyst. The focus is the construction or assembly of
knowledge which provides the basis for evaluation
information collected through sensor and intelligence
sources. The system enables the inclusion of modal logics
in support of the various functions of the system, such as
knowledge update and belief revision and potentially some
form of disjunctive data filtering. Many of these linkages
are ‘zero order’ at this point and can be tailored to support
a specific application domain. For example, the
requirements on the disjunctive logic required in an
automated system are going to be more stringent than for
an application supporting an intel analyst.  Similar
arguments apply to the modal logics associated with
knowledge construction and revision.

In this paper the focus of the discussion has been the
inductive learning engine that is integral to the system.
The architecture to support all of the decision aid functions
is displayed in Figure 1. The other major component of the
system is the abductive hypothesis generation engine that
supports the construction of the virtual belief state of the



decision aid. This component is described in other
documentation (Ref. 13).
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Figure 1. Decision support architecture.

Intel Analysis

One application domain we have been working supports an
intel analyst. The rough scenario is an analyst is tasked
with monitoring events for a possible terrorist attack in
North America. Given this kind of problem there are many
resources that may be utilized as pre-existing knowledge
bases, such as a terrorist incident database.

Target NK
resUILUNK
NK

Figure 2. Raw terror incident data.

In this case a database from state department reports from
1992-1998 was used in an effort to understand possible
patterns of behavior and tactical preferences by various

groups. Raw data often conveys very little information to
the analyst, Figure 2, but in many cases it is possible to
process the information, to convert it to knowledge and
find interesting and useful knowledge in the transformed
data. The terror incidents were characterized by date,
target, location, result, and the group responsible for the
incident. The data was processed by the inductive learning
engine in the Peicean Decision Aid (PDA) to construct the
desired knowledge. The resultant knowledge base, in a
lattice display, is depicted in Figure 3.

[ [hamas 2 7o [slamicjinad

Figure 3. Terror incident database sample.

The highlighted section in the figure shows the result of a
query concerning the area of operations. The knowledge
base shows that ‘HAMAS’ and ‘Islamic_Jihad’ are the only
groups operating in North America up to 1998. Similar
queries show that HAMAS uses bombing as a tactic,
impelling the analyst to key on information concerning the
loss or theft of explosive material, as an example.

Like the case of the terror incident database, it is possible
to process phone calls, bank transactions and other
information bases to convert the information into
knowledge permitting us to interpret data being collected
by the analyst. Instead of seeing a series of transactions,
we see linkages between banks known to launder money,
the bank of a suspect, Confederate Bank, and a link to a
new account / suspect at a Maryland bank, see Figure 4.
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Figure 4. Knowledge associated with bank
transactions.

Forensics analysis

A second decision support area explored involved a
problem of nuclear forensics. In this problem we have
databases of assayed nuclear material as reference samples.
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The problem involves determining the origin of an
unknown nuclear material. The complexity of the problem
can be rather daunting. The material carries its entire
history in its chemical composition. = The mining,
enrichment, fabrication, operational history, and its
reprocessing affects sample compositions.

This problem was appealing because it had the potential of
breaking the algorithms as implemented within the PDA
system. The sample data consisted of over 100 real valued
attributes which were fuzzified into over 500 qualitative
attributes for describing the materials in the database.

Figure 5 captures some of the complexity of the
information contained in this knowledge base. The lattice
does show that we can uniquely define the source of
interdicted material. The bottom row of the lattice has
separate instances for each reactor which is why we can
make that assertion. Additional assessments will be made
on expanded data sets to explore the robustness of the
algorithms and the data bases.
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Figure 5. Example of a forensic lattice. (for demonstration of structural complexity)



Preliminary Qualitative Evaluation

Using the theories and technologies of Peircean reasoning
provides the analyst with knowledge that can assist their
daily activities as opposed to adding to their cognitive load.
What we have is a capability that can process massive
amounts of information that is likely to over whelm a
decision maker faced with classical decision support
technologies such as an air traffic control system. In these
types of system raw data is presented to the decision maker
who must reason or internally fuse the information
provided. The inductive learning engine performs a
function that produces knowledge that can be used to
evaluate data that enters a decision makers field of
perception.

The structure of the solution developed is a very
‘transparent’ system. This transparency was part of the
initial requirements to enable confidence to be developed
by a user of the system. The abductive component is easily
validated by examination of the virtual belief cache that is
constructed. In this cache, the hypothesis support is
provided along with implicit support and unresolved
information, permitting a decision maker to validate in real
time, conclusions generated. Validation of the inductive
learning engine is a continuing activity. We are continually
searching for more difficult and complex problems to
employ in the overall system. The validation approach is
to use the variability of the engineered solution in a design
of experiment approach to assess the limits of the
knowledge constructed by the inductive engine and
evaluate based on the abductive solutions generated based
on data presented to the system.

What has been produced in this effort is a robust flexible
decision support functionality that has its roots in
reasoning, knowledge representation and logic theory. The
system is a hybrid solution using these technologies in a
manner in which the best technology is matched to
function. We have applied the integrated solution to a
number problems utilizing differing process methodologies
and have attempted to break the system by going well
beyond toy problems. While the solution is a 70 - 80%
solution we already have seen the system produce solutions
that produced varying levels of surprise, in terms of
insights provided in complex analysis domains.
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