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Abstract
This article constitutes a “report from the field” on a 
decision aid / fusion system with a foundation in reasoning 
from a heuristic based perspective of philosophy.  While the 
system employs multiple components of Peirce’s ‘method of 
scientific inquiry’, the focus of the article is the inductive 
learning engine.  Within a Peircean reasoning engine, 
induction is the work horse of reasoning functions.  
Induction is a form of reasoning in which a sample is used 
as a representation of a much larger population.  It  is an 
approximate form of reasoning.  It  serves as a hypothesis 
validation mechanism, as a reasoning algorithm and it 
supports learning and the modification of knowledge.  The 
capability discussed in this note focuses on the extension of 
Finn’s methodology to define a learning algorithm that 
supports a comprehensive Peircean reasoning engine.

Introduction
Development of fusion or decision support systems 
requires the integration of reasoning capabilities into the 
system solutions.  This report documents the inductive 
learning sub-system of a decision aid we have developed at 
Sandia.  The system architecture provides a foundation for 
an integrated reasoning system based on C.S. Peirce’s 
method of ‘scientific inquiry’ which includes abduction, 
deduction and induction.  Theories of human information 
processing can be found in the fields of cognitive 
psychology, neural-physiology or in philosophical 
theories.  Modal logic and philosophy provide a heuristic 
assessment of the functions of human reasoning at an 
engineering level.  The neural-physiological models are the 
‘physics’ of human cognitive functionality, defining the 
electrical-chemical dynamics of the processes associated 
cognition.   Engineering a solution to this information 
processing problem necessitates an understanding of the 
heuristics of reasoning.  As in thermodynamics, the ‘laws’ 
of heat transfer between bodies are a heuristic 
representation of a molecular phenomena and are used in 
engineering solutions to the flow of energy in materials.  In 
order to understand the physics of this energy transfer 
process requires an understanding of statistical physics.  
Reasoning consists of the trained and/or ad-hoc process we 
use to solve problems.  Within the context of our 
development, abduction provides the basis for hypothesis 
generation when new data/information enters our 
awareness.  Deduction is the engine that supports the 

hypothesis selection process and induction becomes the 
hypothesis verification process.  In addition, induction 
supports the functions of approximate reasoning and 
learning, which seems to be an innate human capability.  
A brief description of the knowledge representation 
technology is provided in order to establish the foundation 
on which the mathematics of induction is constructed.  The 
focus of the paper is the mathematics of inductive learning 
and the applications of induction as implemented in the 
Peircean decision aid.

Supporting Architecture
The application domain supports decision aid development 
in which data/information is convolved with knowledge to 
create a belief state, a theoretical interpretation of 
situational awareness, which forms the basis for making 
decisions.  The mathematical foundations of formal 
concept analysis provides a foundation for developing sets 
of operators that define the functionalities of our reasoning 
system.  
Formal concept analysis (FCA), developed by Ganter & 
Wille (Ref. 4,5), is based on ordered set theory and uses 
lattice theory as a rich technology for visualizing 
information and knowledge.  FCA is based on the idea of a 
formal context, KFC, defined by a ‘triple’ as the one in 
equation 1.

KFC = (G, M, I )  Eqn 1

In this equation G and M are sets of objects and attributes 
respectively and I is a binary relation between the two sets.  
Within our problem domain we have refined the relation 
operator, I, to be a set of relations, each member 
corresponding to a specific predicate in the information 
domain.   This permits us to assign some descriptive 
property to the binary relationship between the objects and 
attributes.   
There is an operator, symbolized by (⋅)′, which aids in the 
definition of formal concepts from the formal context.  

(A l) / {m ! M |(g,m)! I,6g ! A}

(B l) / {g ! G |(g,m)! I,6m ! B}  
Eqn 2

In equation 2, the operator action on the object set A 
produces the set of attributes common to objects within the 
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‘A’ set.  Likewise, application of the operator on a set of 
attributes ‘B’ produces the set of objects which posses 
those attributes in common. 
A construct from FCA that we will need later in the paper 
is the idea of a Begriff.  Within FCA the ‘context‘ 
constitutes a unit of knowledge / information and forms the 
basis of a lattice.  A concept is a set of sets, (A,B), in which 
A is the set of objects and B is the set of attributes common 
to that set of objects.  The prime  operator defined above is 
the operator that defines the mapping between the two sets.  
The Begriff is the set of all concepts of a context.  The set 
of concepts can be defined by an application of the ‘prime’ 
operator discussed in the previous sections.   The first step 
in defining the Begriff is to define an attribute set 
consisting of the intent of a context.  The power set of this 
attribute set provides the basis set on which the prime 
operator is applied to produce the extent of all concepts in 
a context. 

S = {Intent} formal context

Ps= {p} = {P (S)}
B = { {(pk) '}k
/ , {pk}}  

 Eqn 3

Ps represents the power set of the contexts intent, and B is 
the Begriff which is a partially ordered set of concepts 
without duplications that may result from the process of 
applying the ‘prime’ operator on each member of the 
power set.
A procedural approach to defining a Begriff can be found 
in Davey & Priestley’s (Ref. 2) book.   This approach relies 
on a process that uses a series of set intersections as the 
context is processed.  The effect is the same while the 
equations above are a rigorous interpretation of the process 
described.

Induction
A summery paper by Evan Heit (Ref. 6) provides a nice 
analysis of induction from a psychological perspective.  
There work focused on the evaluation of inductive 
arguments of a form given in equation 4.

The conclusion must follow
Given a premise

 
Eqn 4

In a deduction logic, if the premise is true the conclusion 
must be true, the inductive logic introduces an uncertainty.  
If the premise is true the conclusion is expected to be true.  
The psychological studies discussed in the review paper 
explored a number of factors associated with the argument 
and assessed the strength subjects placed on the 
conclusions.
The article describes conditions associated with good 
cases, sets of cases and properties for inductive reasoning.  
The examples they use are presumed to be single premise 
cases.  As an example they discuss examples such as:

My house will be burgled
Nearby houses were burgled

vs.

My house will be burgled
Houses 50miles awaywere burgled

 

Eqn 5

The first case leads to a stronger induction than the later in 
the study.  They provide similar cases for problems 
involving animals described to exist on an isolated island 
in order to attempt some form of knowledge constraint.  It 
seems that, what has been missed is an implicit multi-
premise induction being performed.  this ‘implicit’ set of 
premises was not captured.  Subjects bring prior 
knowledge into the problem and evaluate the strength of 
the inductive arguments based on this knowledge.  
Effectively things such as; “ ...50 miles from here is a large 
city with a high level of crime, my neighborhood lies in a 
very safe area so the likelihood of my house being burgled 
is low”.  
Similarly the animal examples fail to take into account the 
fact that we possess varying levels of biological knowledge 
and recognize that premise and conclusion involving 
species from a similar order may possess common 
anatomical characteristics or susceptibilities.  Their 
discussion of ‘property’, reflects a similar issue.  Certain 
classes of predicate carry varying levels of prior 
knowledge or meaning and impart varying levels of 
strength to the inductive arguments.  Their example uses 
the predicates ‘thrives’ versus ‘secretes’ one which is 
qualitative in nature while the second has a foundation in 
biology.  The bottom line for me is the experiments 
discussed could not be considered single premise 
experiments with results drawn based on that supposition.
The discussion of sets of cases was of more interest in that 
it focused on the numbers and the diversity of the premises 
category.  The greater the number of examples supporting a 
conclusion adds strength as does the greater the diversity 
of the examples (premises)  in the inductive argument.  It 
would seem that this is getting closer to the nature of 
induction and the inherent statistical character of the 
problem.  Within the area of case sets no results dealing 
with counter examples was explored,  This may be due to 
the single premise constraint imposed on the experiments.  
In this situation, the set of attributes and corresponding set 
of objects can represent instances that would result in both 
true and false conclusions.

Theoretical foundations
Within the domain of philosophy a significant body of 
research exists that addresses induction.  The work used as 
the foundations for the Sandia decision aid is based on 
Peirce’s modal of reasoning (Ref. 9, 10, 11)  coupled to the 
work of V. Finn (Ref. 1, 3).  Peirce defined induction ‘...as 
a form of reasoning from a sample to the whole sampled.’  
‘Induction is the mode of reasoning which adopts a 
conclusion as approximate.’  Peirce indicated that there 



exists three kinds of induction all based on random 
samples.  He seems to have used different terms for these 
types of induction but in general they consisted of a weak 
form, a strong form, and the ‘gradual’ form. 

The strong form of induction consists of a sample or 
collection from a population in which it is possible to 
assess the proportion of the members of that population.  
The weak form deals with statements that could be 
disproved if a single counter example existed; e.g. ‘liberals 
are intellectually bankrupt’.  The third form of induction, 
gradual, is similar to the first form due to its quantitative 
nature.  In this case an estimate of the population 
proportionality is made but each new sample acquired goes 
toward updating the proportions in the population. 

Inductive Reasoning
Reasoning research in Russia has produced some very 
interesting results in which FCA is used as a knowledge 
representation technology and theories of abduction and 
induction have been developed.  The work of V. Finn and 
V. Blinova(Ref. 1, 3) have used J.S. Mills (Ref. 8) canons 
as the guiding principles in developing a theoretical modal 
of inductive reasoning.  Mills canons have been described 
by various researchers, as a set of inductive principles, a 
set of abductive principles and defined as principles 
describing causal reasoning.  It seems that, in part due to 
ambiguities in definitions, that Mills canons have elements 
of each category.
Finn’s (Ref. 1, 3, 7) work focused on the first of Mills five 
canons.  His effort focused on an inductive ‘learning’ 
algorithm which may more accurately be characterized as 
an inductive reasoning algorithm.
Mill’s (Ref. 8) canons consist of :  the ‘Method of 
agreement’, ‘Method of differences’, ‘Indirect method’, 
‘Method of concomitant variation’, and the ‘Method of 
residues’.  The description of the first canon used in Finn’s 
algorithm was taken from Mill’s System of Logic.

The first canon:   If two or more instances of the 
phenomenon under investigation have only one 
circumstance in common, the circumstance in which 
alone all the instances agree, is the cause (or effect) of 
the given phenomenon.

Finn’s implementation of the first canon involves 
considering positive and negative examples of an objective 
that draw from a single set of attributes, and one or more 
unknown examples.  The objective is to classify the 
unknowns according to the reference sets.  The model 
develops a Begriff for the positive and negative example 
sets, then uses the concepts in each Begriff to classify the 
unknown examples as either a positive, negative or as an 
indeterminate. 
The example in Blinova’s paper consists of the positive 
and negative sets in equation 6.

g1+ = a,b,c" ,

g2+ = a,b,d" ,

g3+ = a,b,e" ,

g4+ = a,c,e" ,        

g5- = a,c,d" ,

g6- = b,c,d" ,

g7- = a,d,e" ,  

Eqn 6

The extra intent sets of the positive lattice consisted of 
{a,b}, {a,e}, {a,c}, and {a}.  The extra intent sets of the 
negative lattice consisted of, {c,d}, {a,d}, and {d}. 

The set of unknowns is defined in equation 7.

g8x = a,b,c,e" ,

g9x = c,d,e" ,

g10x = a,b,c,d" ,  

Eqn 7

Finn’s method classified the first case as a positive 
example, the second as a negative example and the third as 
indeterminate due to both positive and negative intents 
being subsets of the example intent.
The one aspect of Finn’s method that I think needs 
modification is the heuristic imposed on the positive and 
negative lattices.  Finn requires that there be ‘2’  or more 
examples in a concept before it can be classified as a 
positive or negative concept in the respective lattices.  
From a theoretical perspective, imposing a heuristic goes 
against the grain.  This constraint is better suited for 
implementation in the engineered solutions where we 
might wish to establish a bias toward false positive or false 
negative classifications.

Inductive Learning
An excellent foundation for inductive reasoning has been 
established by Finn’s work with Mill’s first canon.  In our 
implementation we have opted for an inductive learning 
system as opposed to the reasoning implementation.  The 
algorithm builds on Finn’s work with minor modifications 
and extensions.  In Finn’s work he defines a positive and 
negative lattice to use in the classification process.  We 
needed to learn in situations in which the context possessed 
an arbitrary number of goals.  E.g. the terrorist incident 
database I used contained over 30 groups which 
represented the goal attribute. The algorithm developed is 
provided in the next paragraphs.
The algorithm begins by accepting the entire training set.  
In the example to follow a subset of the State Dept. terror 
incident database was used.  The incidents covered a 
period from 1992 to 1998.  The attributes describing the 
incident include; {date, location, target, tactic, result, 
organization}.  Organization is the goal attribute.  A Begriff 
is defined for each goal attribute in the training set.  These 
Begriffs constitute the positive lattices defined in Blinova’s 
paper.



Bk / (Ak,Bk)| Ak 3 A; Bk = (Ak) '

with

k = goal attribute  
Eqn 8

The first adjustment occurs in the construction of the goal 
oriented Begriffs.  Engineering factors are introduced to 
bias the ultimate algorithms toward false positives or false 
negatives.  This is done by setting likelihood thresholds to 
some fraction of ‘1.0’.  This translates into the number of 
examples associated with a concept in the lattice.  We can 
require that for a positive example we require two or more 
examples or in the case of counter examples two or more 
examples to reflect a counter instance.  The next step of the 
algorithm is to define the resultant classification Begriff 
after any counter examples are removed from the goal 
Begriff.

Bk* / Bk+- Bm+
m! k

/
 Eqn 9

In expression 9, B* represents the positive classification 
Begriff for a goal attribute, in our test problem this might 
be the group HAMAS.  The Begriff class B~, represents the 
Begriffs containing the engineering bias adjustments.  The 
resultant becomes the basis for the new classification 
context that will be constructed by the next steps.
Each concept remaining in the classification Begriff, B*, 
represents positive examples for identifying a specific 
objective.  A concept, C = (A,B), represents a set of 
examples and the associated set of identifying attributes.  
The new object (the former goal attribute) consists of all 
remaining attributes after the operation in equation 9.  This 
resultant set of attributes is the union of the intent of all 
concepts remaining in B*.  After each new object is 
defined from the learning sets, they are added to a new 
context representing a new knowledge domain.
The next step involves constructing a new context Begriff 
and estimating a set of concept likelihoods that can be 
interpreted as a metric for assessing the appropriateness of 
sets of attributes being used as a defining attributes.  We 
can readily define a likelihood of a set of attributes 
associated with a concept, what we are doing is assuming 
we can attribute that concept likelihood to each of the 
attributes comprising that concept.  The mathematics of 
estimating the likelihood for each concept is defined in 
equation 10. 
lhk,m = SizeOf (Cm,E ) / SizeOf ( Bk

* )   Eqn 10

In expression 10, m is a concept index in the classification 
Begriff k.  SizeOf(.)  is a function which determines a size 
metrics in a Begriff, basically the number of objects 
associated with the argument, either the Begriff or the 
concept in this case.  
The final classification context captures the essence of the 
training set in which each goal attribute is an object in the 
constructed classification context with each concept 
assessed for likelihood as a discriminator for an object in 

the newly constructed context. 

Engineering implementation
The Peircean decision aid incorporates 3 basic thresholds 
in the construction of knowledge that will be integrated 
into the knowledge base.  Two of these thresholds apply to 
categorized or pre-defined knowledge and to inductively 
generated knowledge.   Attributes that are defined with a 
probability of being a attribute associated with an object as 
well as real valued attributes that have gone through a 
fuzzification process can be pre-screened for inclusion as a 
descriptor.  E.g. if the probability of being a descriptor is 
less than 0.25 it is removed from consideration as a 
descriptive attribute within a context.  
The second type of threshold is associated with the 
inductive learning algorithms using the likelihood 
estimates in equation 10.  This 2nd class is used to bias the 
system toward false positives or false negatives in the 
construction of the positive and negative Begriff’s in the 
Finn inspired inductive learning model.  In the case of the 
positive Begriff, the threshold sets a lower limit on which 
concepts can be considered good examples of the objective 
being classified.  When a certain grouping of attributes 
does not emerge as a descriptor often it is effectively 
considered an outlier.  In the case of the negative Begriff, 
we are looking for numerous occurrences of a particular 
attribute grouping to use as an indicator of a negative 
example of the objective goal.  The criteria are structured 
such that a high threshold value for either the positive or 
negative thresholds effectively require greater number 
occurrences of either positive or negative examples.

Initial Application
The focus of this application is to provide decision support 
capabilities and / or augment the efforts of an intelligence 
analyst.  The focus is the construction or assembly of 
knowledge which provides the basis for evaluation 
information collected through sensor and intelligence 
sources.  The system enables the inclusion of modal logics 
in support of the various functions of the system, such as 
knowledge update and belief revision and potentially some 
form of disjunctive data filtering.  Many of these linkages 
are ‘zero order’ at this point and can be tailored to support 
a specific application domain.  For example, the 
requirements on the disjunctive logic required in an 
automated system are going to be more stringent than for 
an application supporting an intel analyst.  Similar 
arguments apply to the modal logics associated with 
knowledge construction  and revision.
In this paper the focus of the discussion has been the 
inductive learning engine that is integral to the system.  
The architecture to support all of the decision aid functions 
is displayed in Figure 1.  The other major component of the 
system is the abductive hypothesis generation engine that 
supports the construction of the virtual belief state of the 



decision aid.  This component is described in other 
documentation (Ref. 13). 
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Figure 1.  Decision support architecture.

Intel Analysis
One application domain we have been working supports an 
intel analyst.  The rough scenario is an analyst is tasked 
with monitoring events for a possible terrorist attack in 
North America.  Given this kind of problem there are many 
resources that may be utilized as pre-existing knowledge 
bases, such as a terrorist incident database.   

Figure 2.  Raw terror incident data.

In this case a database from state department reports from 
1992-1998 was used in an effort to understand possible 
patterns of behavior and tactical preferences by various 

groups.  Raw data often conveys very little information to 
the analyst, Figure 2, but in many cases it is possible to 
process the information, to convert it to knowledge and 
find interesting and useful knowledge in the transformed 
data. The terror incidents were characterized by date, 
target, location, result, and the group responsible for the 
incident.  The data was processed by the inductive learning 
engine in the Peicean Decision Aid (PDA) to construct the 
desired knowledge.  The resultant knowledge base, in a 
lattice display, is depicted in Figure 3. 

Figure 3.  Terror incident database sample.

The highlighted section in the figure shows the result of a 
query concerning the area of operations.  The knowledge 
base shows that ‘HAMAS’ and ‘Islamic_Jihad’ are the only 
groups operating in North America up to 1998.  Similar 
queries show that HAMAS uses bombing as a tactic, 
impelling the analyst to key on information concerning the 
loss or theft of explosive material, as an example. 
Like the case of the terror incident database, it is possible 
to process phone calls, bank transactions and other 
information bases to convert the information into 
knowledge permitting us to interpret data being collected 
by the analyst.  Instead of seeing a series of transactions, 
we see linkages between banks known to launder money, 
the bank of a suspect,  Confederate Bank, and a link to a 
new account / suspect at a Maryland bank, see Figure 4.  



Figure 4.  Knowledge associated with bank 
transactions.

Forensics analysis
A second decision support area explored involved a 
problem of nuclear forensics.  In this problem we have 
databases of assayed nuclear material as reference samples.  

The problem involves determining the origin of an 
unknown nuclear material.  The complexity of the problem 
can be rather daunting.  The material carries its entire 
history in its chemical composition.  The mining, 
enrichment, fabrication, operational history, and its 
reprocessing affects sample compositions.   
This problem was appealing because it had the potential of 
breaking the algorithms as implemented within the PDA 
system.  The sample data consisted of over 100 real valued 
attributes which were fuzzified into over 500 qualitative 
attributes for describing the materials in the database.    
Figure 5 captures some of the complexity of the 
information contained in this knowledge base.  The lattice 
does show that we can uniquely define the source of 
interdicted material.  The bottom row of the lattice has 
separate instances for each reactor which  is why we can 
make that assertion.  Additional assessments will be made 
on expanded data sets to explore the robustness of the 
algorithms and the data bases.

Figure 5.  Example of a forensic lattice.  (for demonstration of structural complexity)



Preliminary Qualitative Evaluation
Using the theories and technologies of Peircean reasoning 
provides the analyst with knowledge that can assist their 
daily activities as opposed to adding to their cognitive load.   
What we have is a capability that can process massive 
amounts of information that is likely to over whelm a 
decision maker faced with classical decision support 
technologies such as an air traffic control system.  In these 
types of system raw data is presented to the decision maker 
who must reason or internally fuse the information 
provided.  The inductive learning engine performs a 
function that produces knowledge that can be used to 
evaluate data that enters a decision makers field of 
perception.
The structure of the solution developed is a very 
‘transparent’ system.  This transparency was part of the 
initial requirements to enable confidence to be developed 
by a user of the system.  The abductive component is easily 
validated by examination of the virtual belief cache that is 
constructed.  In this cache, the hypothesis support is 
provided along with implicit support and unresolved 
information, permitting a decision maker to validate in real 
time, conclusions generated.  Validation of the inductive 
learning engine is a continuing activity.  We are continually 
searching for more difficult and complex problems to 
employ in the overall system.  The validation approach is 
to use the variability of the engineered solution in a design 
of experiment approach to assess the limits of the 
knowledge constructed by the inductive engine and 
evaluate based on the abductive solutions generated based 
on data presented to the system.
What has been produced in this effort is a robust flexible 
decision support functionality that has its roots in 
reasoning, knowledge representation and logic theory.  The 
system is a hybrid solution using these technologies in a 
manner in which the best technology is matched to 
function.  We have applied the integrated solution to a 
number problems utilizing differing process methodologies 
and have attempted to break the system by going well 
beyond toy problems.   While the solution is a 70 - 80% 
solution we already have seen the system produce solutions 
that produced varying levels of surprise, in terms of 
insights provided in complex analysis domains.
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