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Abstract—Autonomous robot navigation in unstructured out-
door environments is a challenging area of active research. The
navigation task requires identifying safe, traversable paths which
allow the robot to progress toward a goal while avoiding obstacles.
One approach is to apply Machine Learning techniques that
accomplish near to far learning by augmenting near-field Stereo
to identify safe terrain and obstacles in the far field. Some
mechanism for applying past learned experience to the active
navigation task is crucial for effective far-field classification.

Recently, Ensemble Selection has been proposed as a mecha-
nism for selecting and combining models from an existing model
library and shown to perform well. We propose the adaptation
of this technique to the time-evolving data associated with the
outdoor robot navigation domain. Important research questions
as to the composition of the model library, as well as how
to combine selected models’ output, are addressed in a two-
factor experimental evaluation. We evaluate the performance of
our technique on six fully labeled datasets, and show that our
technique outperforms several baseline techniques that do not
leverage past experience.

I. INTRODUCTION

Autonomous robot navigation in unstructured outdoor en-
vironments is a challenging area of active research and is
currently unsolved. The navigation task requires identifying
safe, traversable paths which allow the robot to progress
toward a goal while avoiding obstacles (Fig. 1). Stereo is
an effective tool in the near field, but for smooth long-range
trajectory planning or fast driving an approach is needed to
understand far-field terrain as well.

The data in this problem domain differ from those in
traditional static contexts in that the incoming image data are
streaming and batch-oriented. Further, the data are associated
with concept drift, where the underlying distribution of the
data and target concept can and do change over time. Tracking
such drifting concepts, handling abrupt changes in the target
concept, and recognizing recurring contexts all present unique
challenges not present in static domains.

One approach to address the far-field terrain identification
problem is to apply Machine Learning techniques to achieve
near-to-far learning by augmenting near-field Stereo readings
with learned classifications of the appearance of safe terrain
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Typical outdoor navigation scenario (left). Terrain classification on
same image using the proposed algorithm, Ensemble Selection (right).

Fig. 1.

and obstacles in the far field. Classifier ensembles containing
multiple learned models can be employed as a mechanism to
apply previously learned experience in this regard, enabling
increased far-field terrain classification performance and pro-
viding a capability to address drifting concepts. Classifier
ensembles are the focus of much recent Machine Learning
research [1] and form the basis of many powerful and well-
known techniques [2], [3].

Our previous work [4], [5], [6] frames this problem as a
supervised Machine Learning problem, where features based
on image color are used to classify traversable terrain and
obstacles in the far field. This previous work also motivates
the use of classifier ensembles by demonstrating the short-
comings of first-order single-model techniques. In particular,
with single-model-per-image approaches, there is no way to
identify obstacles in the far field unless there are examples of
those obstacles in the near field. Because this is not always the
case, basic approaches to this problem lead to a common fail-
ure mode in outdoor autonomous navigation where incorrect
trajectories are followed due to short-sightedness [7].

This paper explores in more detail the use of classifier
ensembles to learn and store terrain models over time. These
ensembles are constructed dynamically from a model library
that is maintained while an autonomous vehicle navigates
terrain towards some goal. The models in the ensemble are
selected from the library and their outputs combined, dynam-
ically and in real-time, in a manner designed to optimize
predictive performance on far-field terrain. Towards this end,
an adaptation of Ensemble Selection [8] is proposed as an
effective means of selecting and combining models from an
existing model library.

The contribution of this research is three-fold; in this paper,
we:



1) Propose the adaptation of Ensemble Selection to dy-
namic environments, and demonstrate its effective use
in the outdoor robot navigation problem domain;

2) Conduct experiments to answer important questions for
the community, in particular, (a) whether or not previ-
ously learned models on similar terrain can be leveraged
to boost performance, and (b) how to best combine the
outputs of multiple models selected from the library; and

3) Contribute natural, hand-labeled datasets taken from the
problem domain and shown to contain time-varying
concepts.

The remainder of this paper is organized as follows. First, in
the remainder of this section, characteristics of the dynamic
data associated with the problem domain are explored, and
a general formulation of the library/ensemble approach is
given. In Section II, the proposed algorithm, an adaptation
of Ensemble Selection, is given. The experimental approach
is outlined in Section III, and the results of the experiments
are discussed in Section IV. Finally, conclusions and future
work are provided in Section V.

A. Characteristics of Data in Dynamic Environments

The problem domain is associated with a dynamic, or time-
evolving, environment. In contrast to more common environ-
ments, for example static ones typified by datasets found in
the UCI Machine Learning Repository [9], the data dealt with
in this paper are associated with many unique characteristics:

Large scale. The data arrive in the form of images at a rate
of up to 30 frames/sec. Typically, there may be on the order of
50,000 training points to choose from in each 640x480 image,
as determined by Stereo near-field labels. Feature dimension
can also be significant, and is dependent on feature type; for
color histogram (used in the experiments in this research),
feature dimension d is fixed at 15 (details are given in [6]).

Streaming and Temporal. The data come arrive sequen-
tially and in a streaming manner. Each new batch of data
available represents a group of data that is associated with
a frame more recent in time than the previous.

Batch-Oriented. The data is not a constant stream that
can be sampled from arbitrarily. Rather, the data arrive in
batches, or chunks, corresponding to the pixels of a single
incoming image. This supports the use of traditional batch
learner Machine Learning algorithms.

Real-Time. The data must be processed in real-time. There
is generally not time to resample the data (e.g., with Boosting),
and there is generally no time to examine previous data.
Processing and taking action on the most recent incoming
image (frame) is critical, because the robot will be physically
moving, and obstacle avoidance and path planning are time-
sensitive tasks.

Noisy. Noise can enter into the system in any number
of ways, e.g., via sensor hardware (cameras), natural phe-
nomenon (camera lens flare), and inconsistent class labels
for the supervised training data (due to limitations of stereo
processing).
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Fig. 2. Tllustration of model selection and model combination from a library
of models. For an incoming image I, a labeled validation set V is extracted
from near-field Stereo labels; each model M in the library L is evaluated on
V. Models are selected according to some scheme to form the active ensemble
£. All models in £ are evaluated on the entire image, and the resulting output
of each model is combined. The combined output represents the final terrain
classification of image 1.

Drifting Concepts. The underlying distribution of the in-
coming data will change over time. These changes are typ-
ically gradual (the current terrain slowly changes). In some
cases, the changes can be abrupt (the lighting changes, some-
thing unexpected entered the scene, or a lens flare or other
camera anomaly occurred). They can also be more systematic
(the robot begins a new mission in different terrain). Finally,
contexts can be recurring in the sense that the terrain may
gradually drift back to what the robot previously traversed
some number of frames ago.

B. General Formulation of the Ensemble Approach

Classifier ensembles can be a powerful mechanism for
increasing the effectiveness of machine learning techniques
in a variety of problem domains. An ensemble of classifiers
is simply a collection of one more classifiers (or models).
An ensemble can be constructed in a variety of ways; for
example, it can be dynamically created over time in response
to the incoming data stream. Alternatively, a library of one or
more models may already exist in memory, and ensembles can
be selected from this library to optimize performance on the
current test data. These two approaches can also be combined;
in this case, a library of models is available but is also modified
on-line by adding new models over time (and, if appropriate,
pruning irrelevant models from the library).

The procedure for evaluating a classifier ensemble on an
incoming test point x is more involved than for the single
model case. The procedure, as described below, is illustrated
in Fig. 2.

First, the classifier ensemble must be formed. This is re-
ferred to as model selection. Generally, for a library £ contain-
ing M models, an ensemble £ of K models is selected from L,



where K < M. In practice, K can be fixed [4]; alternatively,
K can be determined automatically as provided for in certain
algorithms, e.g., the Ensemble Selection algorithm considered
in this paper.

The K individual models that are selected to comprise &£
are sometimes referred to as experts or constituent classifiers.
As a basic example, each model in £ could be scored on its
performance on validation data for the current image, with the
top K scoring models selected for the final ensemble. (In this
paper, Ensemble Selection accomplishes this model selection
in a more elaborate manner.)

After model selection is performed, the ensemble is ready
to be applied to the current task (image). Each of the selected
models My, My, ..., Mk in £ is applied to the test point
x. (In practice, when the models are evaluated over an entire
image, the models will be evaluated on a collection of test
points (pixels), denoted X, a matrix.) The raw output of each
individual model M at each test point x is denoted z; hence,
the output of each individual model M on multiple test points
X is denoted z, a vector. Finally the output of all K models
M, Ms, ..., Mg on test matrix X is denoted Z, a matrix
of raw model output values representing the uncombined raw
ensemble output on a collection of test points (here, pixels in
an image).

The uncombined final output Z of ensemble £ on test data
X is denoted by q and is a composite function of each
individual constituent classifier’s raw output. Arriving at q
from Z is referred to as model combination. In the most basic
sense, model combination can be a simple average of the raw
outputs of each model over the test points. This is sometimes
referred to as an unweighted majority vote. More powerfully,
a weighted average can be used, resulting in some experts
having stronger influence (i.e., more say) in the final ensemble
output. Both approaches are considered in the experimental
study done for this paper.

II. PROPOSED APPROACH AND MOTIVATION
A. Ensemble Selection for Dynamic Environments

Caruana et al. describe in [8] and [10] an algorithm called
Ensemble Selection. Ensemble Selection involves selecting
models from a pre-built library of models. This different
from the approach taken by many related algorithms, for
example, SEA [11], WCEA [12], and ACE [13], where a
single, dynamic ensemble of models is maintained in memory.
In contrast, the actual ensemble is selected from the library,
and only this “active ensemble” is applied to the current image.

Ensemble Selection was originally envisioned for use in
static environments. The adaptation of Ensemble Selection to
dynamic environments such as the problem domain is novel.
The basic ensemble selection procedure, taken from [8], is
shown below.

1) Start with the empty ensemble.

2) Add to the ensemble the model in the library that max-
imizes the ensemble’s performance to the error metric
on a hillclimb (validation) set.

3) Repeat Step 2 for a fixed number of iterations of until
all of the models have been used.

4) Return the ensemble from the nested set of ensembles
that has maximum performance on the hillclimb (vali-
dation) set.

Thus, Ensemble Selection proceeds in a forward greedy step-
wise manner.

Apparent in the algorithm is an inherent lack of parameteri-
zation; Ensemble Selection is considered for this reason to be
automatic for the terrain classification task, a major advantage
in this problem domain where optimal values for parameters
are usually task/scene-dependent. The automatic nature of
Ensemble Selection, combined with excellent demonstrated
performance in the literature (on static domains), forms the
basis for its proposed use in this problem domain.

The following sections discuss the operation of the En-
semble Selection algorithm. First, the underlying base learner
is described; then, the procedure for ensemble construction
(model selection), associated stopping criteria, and model
combination is given. The section concludes with an illus-
trative example of the algorithm in action.

B. Base Learner

Generally, any type of base learner may be used with
Ensemble Selection. Indeed, when introduced, Ensemble Se-
lection was shown to perform well when the underlying library
contained models trained with different machine learning
algorithms (SVMs, decision trees, etc.) and with different
learning parameters. Such diversity is shown to be beneficial in
ensemble learning [1]. However, in this research, ensembles
and libraries are homogenous in the sense that they contain
models from one single type of base learner.

The base learner used in this research is a linear SVM with
special scaling applied for obtaining probabilistic output. This
scaling technique, first proposed by Grudic in [14] and later
formalized by the author in [4], is characterized by the use
of histograms to approximate the density of the hyperplane
distance of the model outputs. This serves as a mechanism
to estimate the past training “density” associated for a given
test point x with which the model is presented. In short,
the probabilistic output given by this model comes directly
from its estimate of model applicability, in turn based on
the distribution of the training data. This approach contrasts
with that taken by Platt’s scaling method [15], which returns
probabilities based on signed hyperplane distance instead of
point-to-hyperplane distance densities.

This capability lends itself directly to establishing model
applicability for any given evaluation point x. The motivation
for developing this capability is a common problem with tradi-
tional classification techniques: traditionally, resulting models
are applied “blindly” over some test data (here, an image),
including parts of the test set (areas of the image) that may
differ significantly from the training set. In this situation, the
resulting model output has little or no meaning. The density
approach here addresses this issue by providing an pointwise
estimate of model applicability, where the model responds



more strongly to terrain that more closely correlates with the
data on which the model was trained.

This pointwise applicability is very powerful. Used directly,
the density estimate (which is scaled to be on [0, 1]) can be
used as a confidence value in the given output class. (Note that
this value does not represent a true probability in a Bayesian
sense.)

The underlying algorithm used by the histogram method
described above is linear SVM, implemented by LIBLINEAR
[16], a very fast linear SVM implementation created by the
authors of LIBSVM [17].

C. Ensemble Construction

Construction of the ensemble £ proceeds in the canonical
Ensemble Selection manner. Prior to ensemble construction,
a balanced validation set, here denoted )V, is constructed as
outlined in Sec. III-F. The ensemble is iteratively optimized
to this data by adding one model at a time from the library
L that maximizes the ensemble’s performance at each step on
V. An example of this procedure is given in Table I.

D. Stopping Criteria

Ensemble Selection proceeds in the above manner until
one of the stopping criteria is met. The stopping criteria are
dictated by any of the three conditions below:

1) There is no model in the library that, when added to
the ensemble, results in higher ensemble performance
compared to just the current ensemble alone;

2) The active ensemble reaches a maximum size, fixed (by
hand) at 16; and

3) While the algorithm is executing, it is interrupted and a
final “best-effort” classification answer is requested by
the robot.

E. Evaluation

Once any of the stopping criteria met, model selection is
concluded. At this point, ensemble £ has been selected from
the library. The selected models in £ are then each evaluated
over the image. Each model’s output must then be combined.
The combined output of each model is the final output of the
algorithm for the given input image.

F. Combination of Selected Models

After each model is evaluated over the image, those models’
outputs must be combined. There are a number of ways to
perform model combination; three such methods are examined
below. Each method is a level in the Model Combination
experimental variable.

1) Unweighted Majority Vote: One of the simplest form
of combining the outputs of multiple models is achieved by
taking the unweighted average of each model’s output at each
evaluation point. This is generally referred to as an unweighted
majority vote of each expert’s prediction.

2) Maximum Confidence Wins: Instead of taking the aver-
age of all models in £ at each text point, the most confident
value could be selected. This has the property that, if a model
is the most confident for a particular point, its output at that
point is used in the final classification. However, the fact
that this is the case has no bearing on any other points;
the pointwise operations are independent of each other. Once
concern with this approach is that the output could be an
outlier and/or the model could simply be incorrect at the given
point.

3) Weighting by Confidence: When a weighted average is
desired, typically, a single weight representing the importance
of or belief in that model is obtained; the weighted average is
then taken at each point in the evaluation set with the same
set of model weights. How model weights are obtained is an
area of active research; for example, weights could be derived
from the model’s historical performance or its performance
on validation data from the current frame. Because the model
outputs are confidence values, the outputs themselves can be
weights. This allows for a unique set of weights to be used at
each evaluation point, instead of just one weight per model.

G. Demonstration of Algorithm Operation

Consider the following scenario, taken directly from the
results. An experimental run is being conducted on Dataset
DS1B using Ensemble Selection. The library is initially empty,
but models are trained on each incoming image and added
to the library as the experimental run progresses. For this
example, the experimental run is at frame 45, and accordingly
model Mys trained on image I45 has just been added to the
library £. £ thus consists of M = 45 models, numbered 1
through 45.

In the context of the above scenario, the iterative operation
of Ensemble Selection is illustrated in Table I. In this example,
the best single model in the library £ of 45 models scored
0.82412 using the mean CCA metric on near-field validation
data V provided by Stereo. By choosing a subset of models
from the ensemble, that score increased monotonically to
0.94657 by the time the algorithm terminated, a 15% increase
over the best single model. The plot of the increasing ensemble
score over time is illustrated in Fig. 3.

H. Summary

This section detailed the operation of the dynamic-
environments adaptation of the Ensemble Selection algorithm
as applied to the terrain classification problem domain. This
implementation was shown to be automatic, requiring no
parameterization. The exact mechanics of the algorithm were
given, including a discussion on the base learner; the mech-
anism used for combining model outputs and the related
performance metric, CCA; and the three stopping criteria. The
preceding three topics are novel contributions of this research,
beyond what is prescribed by basic Ensemble Selection.

An optimized MATLAB implementation of Ensemble Se-
lection for Dynamic Environments is contributed along with
this paper and is available at [18].



TABLE I
DEMONSTRATION OF ENSEMBLE SELECTION OPERATION

Iteration Model Indices / Ensemble Snapshot &; Score of &;
0 [] —
1 30 0.82412
2 30 43 0.88148
3 30 43 25 0.90181
4 30 43 25 45 0.91528
5 30 43 25 45 29 0.92378
6 30 43 25 45 29 42 0.93104
7 30 43 25 4529 42 28 0.93483
8 30 43 25 45 29 42 28 40 0.93774
9 30 43 25 45 29 42 28 40 26 0.94007
10 30 43 25 45 29 42 28 40 26 38 0.94218
11 30 43 25 45 29 42 28 40 26 38 22 0.94399
12 30 43 25 45 29 42 28 40 26 38 22 41 0.94500
13 30 43 25 45 29 42 28 40 26 38 22 41 21 0.94590
14 30 43 25 45 29 42 28 40 26 38 22 41 21 44 0.94657
Efinal 30 43 25 45 29 42 28 40 26 38 22 41 21 44 0.94657
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Fig. 3. Demonstration of the Ensemble Selection algorithm over time.

This plot shows the mean CCA performance of the overall ensemble as
it is iteratively constructed. The single best model alone scores 0.82412,
while judiciously selecting the composition of the ensemble results in a final
ensemble mean CCA of 0.94657, a 15% reduction in error.

III. EXPERIMENTAL DESIGN

A. Research Objectives

This paper aims to provide answers to the following research
questions:

« Does the proposed adaptation of the Ensemble Selection
algorithm work in dynamic environments, such as the
problem domain?

o Can careful selection of models via Ensemble Selection
outperform single-model-per-image approaches?

« Does the existence of any previously learned models on
similar terrain in the library help performance?

o Does the manner in which models are combined result in
any significant performance differences?

B. Experimental Approach

To answer these questions, an experimental framework was
developed. The following points are central to this framework:

Real data: Experiments are to be performed on image se-
quences taken from outdoor scenarios using standard hardware
found on existing robot platforms.

Varied datasets: Different terrains pose different prob-
lems, and a variety of terrain, seen under different lighting
conditions, is necessary to fully test any approach.

Hand-labeled “ground truth” images: To produce
meaningful performance metrics and comparisons we require
ground-truth data. In this study we evaluate the output of
our technique against test images hand-labeled by a human,
which means all parts of the image (not just the near field)
are considered in the evaluation.

Randomized experiments: In this paper, three randomized
experiments are used to determine mean algorithm perfor-
mance and the associated variance due to randomness present
in various parts of the system.

C. Datasets

Time-evolving domains have a history of being evaluated
on artificial datasets, e.g., “moving hyperplane,” where the
concept drift is introduced manually and any correlation
to real-world problems is unestablished. This motivated the
creation of natural datasets taken from the problem domain.
The natural datasets used here are taken from actual logged
test runs by robots competing in the DARPA LAGR program
[7], and are shown in [6] to contain time-varying (drifting)
concepts. They are part of the contribution of this paper.

Overall, three scenarios are considered. Each scenario is
associated with two distinct datasets, each representing a
different lighting condition. Hence, there are six datasets in
all. The terrain appearing in the datasets varies greatly, with
combinations of ground plane type (mulch vs. dirt vs. woods),
foliage, natural obstacles (trees, dense shrubs) and man-made
obstacles (hay bales). Lighting conditions range from overcast
with good color definition (e.g, DS1B), to very sunny, causing
shadows and saturation (e.g., DS2A). Representative images
from each dataset are shown in Fig. 4. Additional images and
descriptions for each dataset are provided in [6].

Each dataset consists of a 100-frame hand-labeled image
sequence. Each image was manually labeled, with each pixel
being placed into of three classes: Obstacle, Groundplane, or
Unknown. If it was difficult for a human to tell what a certain
area of an image was—even when using context—then that
region was labeled as Unknown.

The datasets, hand-labelings, and a tool to aid in labeling
have all been made publicly available on the web at [18]. They
are in MATLAB format (version 6 compatible) and include
both pre-calculated stereo masks and feature images for ease
of use. These can also be used directly in future experiments,
as the included pre-calculated stereo mask and feature image
for each frame are the same ones used in the experiments done
for this paper.



Fig. 4.
DS1B (top); DS2A and DS2B (middle); and DS3A and DS3B (bottom).

Representative images from each of the six datasets: DS1A and

D. Experimental Variables

Along with the more general goal of empirically demon-
strating the performance of the proposed approach, the exper-
iments are further associated with two factors, or experimental
variables. The first factor is whether or not the library L,
at the start of the experimental run, is pre-populated with
models from similar (but not identical) terrain. If so, those
models will be available from the onset of the experimental
run for selection and application to incoming images. If not,
then only models from the current terrain will be available.
In each case, models from the current run are added to the
library, one model per image. The second factor is the model
combination technique, described in Sec. II-F, and has three
levels.

Everything else in the experiments is kept fixed, e.g., feature
extraction technique, base learner and associated learning
parameters, Stereo parameters, etc.

E. Performance Metric

The performance metric used in this study is Area Under
the ROC Curve (AUC), a summary statistic associated with
ROC (Receiver Operating Characteristic) curves [19]. AUC is
excellent, well-calibrated ranking metric, and is equivalent to
the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative
instance.

FE. Balanced Training and Validation Sets

In these experiments, training and validation sets are always
created with a balanced class distribution, where there are
equal numbers of groundplane and obstacle examples. The
creation of such balanced sets is motivated by the assumption
made by many classifiers that training examples are evenly
distributed among different classes [20]. Unbalanced training
data sets are thus generally considered an unfavorable condi-
tion, and in some cases may require special handling by the
algorithm or by the end user.

The mechanism used to create balanced training datasets
is straightforward and is trivial when the condition of a
maximally large balanced training data set is imposed. (With
the use of LIBLINEAR linear SVM implementation, such
large datasets do not pose a large computational burden.) With
such a condition in place, the training data set should not only
be balanced, but should be as large as possible given the two-
class population of all possible training labels. Thus, all of the
T training examples from the minority class are selected as
training data, and a random sample of size 1" of the majority
class is also selected. Finally, these two sets, both of size 7T,
are combined to create a balanced training data set of size 27".
When validation (or holdout) data are needed, validation sets
are created in a similar manner.

G. Far-Field Evaluation and the Far-Field Band

In general, the aim of this research is to understand terrain
in the far field, between 10m and 100m away from the
robot. Traditional approaches such as Stereo are generally able
to identify obstacles in the near-field. However, navigation
relying solely on understanding the near-field terrain is the
source of a number of common navigational failure modes,
e.g., stereo short-sightedness, as described in Sec. I of this
paper. This motivates experiments aimed at evaluating the
performance of approaches specifically in the far-field.

The region in the two-dimensional image that represents
the “far field” for the purposes of these experiments is com-
paratively small. The far field is formally defined to be the
area of the image that corresponds to beyond 10m of the
robot, but within 100m. In front of this region is the near
field, handled adequately by stereo. Further back from this
region are typically areas above the horizon line. In between
these extremes lies the “far-field band,” comprising 8.40% of
the image. Further details are given in [6]. Only pixels in the
far-field band are taken into account when scoring algorithm
output.

IV. EXPERIMENTAL RESULTS

Raw experimental data for the study is given in Table II.
Overall, the data are indicative of very strong performance
of the Ensemble Selection algorithm adapted for the terrain
classification task. In particular, the performance shown here
is significantly better overall than the one-model-per-image
results published in [6], which used the same datasets and
experimental approach.



Surprisingly, there was no statistically significant difference
in the results for starting an experimental run with an empty
library, versus starting it with a pre-populated library of models
taken from similar terrain (but not the actual current dataset).
That is not to say, necessarily, that such models would not be
useful in a classification context; it may point to a shortcoming
of Ensemble Selection’s ability to correctly select and apply
previously learned terrain models. Another possibility is that
those models may overfit to the validation data, and thus
generalize poorly in the far-field (where the experimental
evaluation takes place in this study). We speculate that the
most useful models for the current image are probably terrain
models learned most recently on the actual current course (or
mission). Certainly, these indifferent results for this experi-
mental variable do not support the additional computational
burden that was observed.

Fig. 5 compares the output of Frame 1 of DS3A for the
two different starting library scenarios. The image on the
left shows reasonable classification, and is achieved by just
a single model built on the actual frame. The image on the
right shows terrain classified by multiple models selected from
a pre-populated ensemble of models from similar terrain. Here,
these models are useful; the segmentation appears more robust,
more confident, and areas of uncertainty in the far-field in
the first image are filled in in the second. This particular
case demonstrates the power of leveraging previously learned
terrain models to achieve better far-field classification.

The most significant result of the study was a clear differ-
ence in the performance of the model combination methods.
Overall, the unweighted majority vote model combination
mechanism was the best performer, and this was a statistically
significant result at the 90% confidence level. Weighting by
confidence was a close second (and, for some datasets, did
not perform statistically better or worse than an unweighted
majority vote). Taking the maximum confidence value at each
point resulted in the worse performance overall and also
for each dataset. The message here is clear; this factor is
significant, and a simple average yields the best results.

Fig. ?? compares the three different model combination
methods for Frame 50 of DS1B. The unweighted majority vote
output shows more conservative classification, particularly in
areas that are strongly misclassified in the other two model
combination methods (e.g., the lower left region of the image).

The difference in the performance of the unweighted major-
ity vote and maximum-confidence model combination methods
is shown clearly in the plot in Fig. 7. In the beginning of the
experimental run, the performance difference is not much, but
quickly becomes apparent as the run proceeds. The unweighted
average technique outperforms on each frame.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed the adaptation of Ensemble Selection,
initially designed for static domains, to the dynamic, time-
evolving environments associated with terrain classification
in the outdoor robot navigation problem domain. This al-
gorithm was selected because it is an automatic approach

TABLE II
SUMMARY OF EXPERIMENTAL RESULTS — AUC

Combination Method

Dataset Lib Type Unweighted? Max Confidence Weighted Conf®

DSIA EMPTY 90.56 +0.26¢ 84.52 £0.50 89.15 £0.43

POPULATED 89.60 £0.52 82.81 £1.22 88.28 £0.23

DSIB EMPTY 91.47 £0.10 86.30 +£0.95 89.33 £0.29

POPULATED 91.41 £0.28 86.13 +0.72 90.55 £0.83

DS2A EMPTY 97.18 £0.05 95.15 4+0.89 97.52 £0.36

POPULATED 97.46 £0.12 94.21 4+0.30 97.32 £0.12

DS2B EMPTY 85.41 £0.96 78.43 £0.48 83.48 £1.42

POPULATED 85.03 £0.67 77.92 +0.73 84.33 £0.85

DS3A EMPTY 99.52 £0.08 99.01 £0.04 99.05 £0.08

POPULATED 99.86 £0.02 99.29 4+0.05 99.52 £0.01

DS3B EMPTY 99.05 £0.02 98.11 £+0.18 98.83 £0.04

POPULATED 99.57 £0.02 98.53 4+0.04 99.51 £0.03

. EMPTY 93.95 £0.20 90.40 £0.17 93.02 £0.27
OVERALL

POPULATED 93.91 £0.23 89.95 +£0.03 93.35 £0.25

* Unweighted majority vote (simple average).

" Select single most confident model.

¢ Weighted average, weighted by confidence.

4 Standard deviation of three repeated measures.
¢ Overall performance, mean over all datasets.

(a) Starting with Empty Library

(b) Starting with Existing Li-
brary

Fig. 5. Comparison of starting library types for frame 1 of DS3A.

to addressing the model selection and model combination
challenges involved in leveraging classifier ensembles for
terrain segmentation.

The results of the experimental analysis support three pri-
mary conclusions. First, Ensemble Selection is an effective
technique to apply multiple model learning to the terrain
segmentation task. Its performance exceeds previously pub-
lished results for single-model-per-image approaches. Second,
the presence of pre-computed models in the model library
available at the start of an experimental run did not result
overall in any statistically significant performance differences.
Third, the model combination technique was a significant
factor and a simple average, or unweighted majority vote, was
found to be the combination technique that resulted in the best
performance.

Finally, this paper contributes six novel, hand-labeled, nat-
ural datasets to the community. These datasets are taken



(a) RGB Image DS1B Frame 50

(c) Single Most Confident (d) Weighted by Confidence

Fig. 6. Comparison of output for Model Combination methods. The source

RGB image is shown in 6(a).

Performance vs. Time (AUC), Ensemble Selection, DS2B

(b) Unweighted Majority Vote

1 T T T T T T T

0.55F Model Combination: Unweighted Average 'y B
= = = Model Combination: Maximum Confidence ‘0
05 1 1 1 1 1 1 1 1' 1
0 10 20 30 40 50 60 70 80 90 100
Fig. 7. Performance vs. Time for Ensemble Selection in DS2B for two

different model combination methods.

from the problem domain and provide the basis for future

experimentation.

Future work will focus on minimizing overfitting of the
selected ensemble on near-field validation data which can
result in reduced accuracy in the far field; various mechanisms

for doing so are discussed in [8] and [10].
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