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Quantum Information ScT

« Background: double quantum dot qubit

* Progress
— MOSFETS
— Valley splitting
— Nanolithography and initial transport
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« A positive bias on the top gate draws electrons from the doped region
towards the plate

« The insulator provides a barrier on to which the electrons accumulate
« Charge in the 2DEG goes as:

_ G x (VG _ Vt)
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Double Quantum Dot

Quantum Information ST

V. d. Wiel, et al., Rev. Mod. Phys., vol. 75, 1 (2003) Petta, et al., Phys. Rev. Lett, vol. 93, 186802 (2004)
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« Charging diagram shifts with
Increased coupling

« Diagram can be used to
determine electron occupation & §

« Voltage pulsescancarryyou ™ v ™ o 7w
through different occupations
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MOSFET

cross-section
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top view

Many-electron
quantum dot

Coulomb blockade,
Coulomb diamonds
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Overview of Silicon Qubit

MOSFET modified
for nanolithography
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Nanolithography

Double dot with
integrated detectors

Control of quantum
states

Coupling between dots,
Moving electrons,
Pulsing techniques,
Fast measurements

Stabiltiy diagrams,
electrometer coupling
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« Background: double quantum dot qubit

* Progress
— MOSFETS
— Valley splitting
— Nanolithography and initial transport
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* Metal oxide semiconductor field effect transistors (MOSFETSs)
will be fabricated in Sandia’s silicon facility (MDL)

e Structures were initially a modified version of the widely available
CINT discovery platform for electronics

e Minimum features size = 180 nm. Nanolithography is outside MDL.
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« Silicon Wafer

High Resistivity Silicon Wafer
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« (Gate Oxide Grown

MOSFET Process Flow

100 A gate oxide
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« Source-Drain Lines Implanted

l o ) 100 A gate oxide n ]
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QOIN]  MOSFET Process Flow
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« Poly-silicon Deposited, Doped, and Patterned

[ | 1000Aposi
D

100 A gate oxide
250 A Nitride etch stop

y @ Sandia
National
LOCKHEED MABT:N//)V Slide 11 Laboratories



Q
Q!\T ~ MOSFET Process Flow
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« Contacts and Vias Formed

[ 11000 A[W] [ ]
| ‘2500 A si02 W !
SiO2
| 1000 A poly-S;i [— —
[ n* 100 A gate oxide n ]
250 A Nitride etch stop 1

D

®* Process characterization used to optimize critical steps

(e.g. C-V on gate oxide)

® Many devices can be fabricated on the 6” wafers
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~Initial 2DEG Transport

QIST

: O?‘idé’l’rﬁ'@‘M@S’F ET developement MOSFET from Si substrate

" Polysilicon can transition to e
insulator at low T. ' —
10000 4
= Contact resistance is very high =
(300 k) for narrow implant
lines.

" Oxide induced 2DEG

e |teration to improve mobility will
occur throughout the project
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Quantum dot properties can be observed in MOSFETS

5.0 T — - dl/dv
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dot transport (e.g. Coulomb 3000 b i y 2x10°
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y Angus, et al. Nanoletters 7, 2051 (2007) Sandia
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m3 add image from Angus paper
image of poly sheet and MOSFET

point out low T challenges

motivate alternate structures (even though Angus results suggest role of mobility is reduced)
mplilly, 1/6/2008



Quantum Information Sc1

« Background: double quantum dot qubit

* Progress
— MOSFETS
— Valley splitting
— Nanolithography and initial transport
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Q"{'I Valley Splitting in a Si-MOSFET

Quantum Information S¢1

6 conduction minima
Valley degeneracy — decoherence k(001)

silicon 2DEG Valley

Splitting <(100)

k(010)

A .

"k(00-1)
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d\-l- - Energy scales in magnetic fields
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Cyclotron Zeeman Valley splitting
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Activation of Quantum Hall States
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d\-l' -+ Activation Measurement Summary
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& LL Broadening (I') — Low B-field estimate
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1. B = 0 mobility: 2. From low B-field SdH data:
I'=h27 ~3.3K '=45-47K
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® Disorder effects are larger than valley splitting

e Depending on which disorder is used, the
extrapolation to B = 0 is impacted.
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d\-l' i Summary
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Thermal activation measurements of the valley splitting yields:

Ay=02+04B,,

Device characteristics:

Peak mobility ~10,000 cm?/Vs
mean free path ~200nm
phase coherence length 1um (peak)
Disorder (I') 3-4K

Future Experiments:

*RF resonance measurement
*Quantum point contacts (magnetic depopulation)
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« Background: double quantum dot qubit

* Progress
— MOSFETS
— Valley splitting
— Nanolithography and initial transport
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®

« Electron beam lithography defines 50 nm features (negative resist process)

« Polysilicon etching, insulator deposition using ALD and a second top gate
are deposited in the uFab or CINT cleanrooms.

» Variations of desired structure can occur rapidly
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‘Front End” Processing: Si MOSFETSs

Quantum Information Sc1

Poly gate exposed for “Back End” processing

W bond pads

2D electron system at Si-SiO, interface
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Ebeam lithography
polysilicon patterning with plasma etch
Deposit 2" dielectric: atomic layer deposition of Al203

Top gate: sputtered Al or ALD metal

BwnN =

Si

Issues: electrical characteristic of ALD, new etch out of MDL for poly

® (C-V used to characterize and optimize ALD process

® QOther oxides can be substituted if necessary
® Working to incorporate EBL in silicon fab — allows better control
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Electron beam lithography Plasma etching Status

WD det | tilt | 12/2/2007

SANDIA 3.0kv X7,500  1pm WD 8.0mm 0,00 k| 196 641 x| 6.7 mm | TLD | 45 ° | 9:41.55 AM

© State-of-the-art Ebeam © MESA/uFab bromine © Point contact, dot and
writer capabilities plasma etch of polysilicon double dot experiments
© NEB negative ebeam resist © 70 nm poly linewidth after will use double dot gates
EBL and etching. © Two full devices finished.

Measurements starting ...
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* Cross structure is operated as a point contact
* This early device has silicon fab processing only (180 nm features)
* Quantum dot behavior occurs near complete pinch-off
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OISl Silicon Qubit Summary
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« Highlights
— Surface accumulation mode approach complements existing efforts

» Possible benefits over other approaches & experimental platform to better
study surface effects, “dopant free” devices & single dopant-surface
coupling

— Integration with Si CMOS line

« Experimental platform integrating custom cryogenic CMOS with single

electron devices (i.e., heating tests & fast or low noise sense)
* Progress

— MOSFETs fabricated for this work have relatively high mobility and can be
used for both gated nanostructures and donor structures

— Valley splitting is present for the 2DEG, and is expected to be larger for
nanostructures

— Nanolithography for making point contacts and dots is underway.
* Transport on very large structures shows complicated blockade
» We anticipate significant improvements for ebeam defined dots.
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