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The amount of helium released depends on 
the crystal structure.

• Similar release 
numbers from similar 
crystal structures.
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The majority of the generated helium is 
stored in helium bubbles.

• Helium bubble shape depends on crystal 
structure.
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Calculating the lattice constant is easy.
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The results for the metallic lattice constant 
calculations are excellent.

Metal/Values Erbium Scandium Titanium Zirconium Yttrium Palladium

Calculated

(Å)

a=3.586

c=5.5578

a=3.321

c=5.163

a=2.9390

c=4.646

a=3.2390

c=5.1780

a=3.6605

c=5.6721

a=3.9598

Experimental

(Å)

a=3.5588

C=5.5874

a=3.309

c=5.2733

a=2.9508

c=4.6855

a=3.2320

c=5.147

a=3.6474

c=5.7306

a=3.8907

Percent Error a=0.76%

c=0.53%

a=0.36%

c=2.1%

a=0.399%

c=0.8%

a=0.2%

c=0.6%

a=0.36%

c=1%

a=1.77%

•For cubic and hexagonal systems the 
agreement is excellent.



The results for the metal hydride lattice 
constants are also excellent

Metal/Values ErH2 ScH2 YH2 ZrH2 TiH2 LaH2

Calculated

(Å)

a=5.1295 a=4.7815 a=5.2168

Experimental

(Å)

a=5.123 a=4.78 a=5.205

Percent 
Error

a=0.13% 0.03% a=0.22%

•Cubic systems show excellent agreement.

•Still having a few difficulties with the tetragonal 
systems.



How to calculate elastic constants:  
stress-strain I

• σ is the stress

• ε is the strain

• σij is the stress acting in the xi direction on the 
plane perpendicular to the xj direction.

– i=j are axial stresses

– i≠j are shear stresses

• σij = ∑cijkl εkl

– Cijkl =elastic moduli 

or elastic constants



How to calculate elastic constants:  
stress-strain II

• The stress, σ, and the strain, ε, must be 
symmetric.     σij = ∑cijkl εkl

• The nature of the cijkl depends on symmetry of the 
crystal.

• Short hand

– c1111 → c11 relations between σ11 and ε11

– c1122 → c12 relations between σ11 and ε22

– c2323 → c44 relations between σ23 and ε23

– In general, 11→1; 22 →2; 23=32 →4;13=31 →5;12=21 →6



How to calculate elastic constants:  
stress-strain III

• Maximum of 21 elastic constants for a crystalline body.

• Cubic crystals the elastic constants reduce to just three 
independent numbers

– c11=c22=c33 axial compression

– c44=c55=c66 shear modulus

– c12=c13=c23 modulus for dilation on compression

– All other cij =0



How to calculate elastic constants:  
stress-strain IV
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How to calculate elastic constants:  
stress-strain V

• Using Hook’s law, if ε are small, can expand 
energy in terms of ε.

• For cubic crystal, energy relation is
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How to calculate elastic constants:  
stress-strain VI
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Calculated elastic constants for the cubic 
phases of some di-hydrides.

Quantity ErD2 YD2 ScD2

C11 (GPa) 146 122 167

C12 (GPa) 58 61 60

C44 (GPa) 74 69 79

B=1/3 (C11 + 2C12)
GR = 5(C11 - C12)C44/[4C44 + 3(C11-C12)] 

GV = (C11-C12 + 3C44)/5
GH = (GR+GV)/2

Y = (9BGH)/(3B + GH) 



Determined moduli for hydrides compared 
to the VASP calculated values.

Quantity ErD2

(cubic)

YD2

(cubic) 

ScD2

(cubic)

LaD2

(cubic)

TiD2

(tet.)

ZrD2

(tet.)

Young’s 
Modulus 
(GPa)

147 124 164

Shear 
Modulus 
(GPa)

60 50 68

Bulk 
Modulus 
(GPa)

87 82 96

Red = calculated values



 Material properties of the thin films 
are deduced using FEM modeling.

 Properties of the indenter and 
underlying layers and substrate are 
fixed at known values.

 Y and E for the layer are varied until a 
good fit to experiment is obtained. 

 Tip yielding, stress, friction are 
all modeled.

 Two primary simplifications:

 2-dimensional axi-symmetric 
meshes

 isotropic elastic-plastic materials 
with Mises yield criteria

Knapp, et al., JAP, vol. 85, p.1460 (1999) 

 Hardness of the layer material
is determined by an additional 
simulation of a “bulk” sample of 
just the layer material:

Y, E 

He-implanted Ni
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Sample configuration

Silicon (111)

Molybdenum 1000 Å thick

Metal ~5000 Å thick



Moduli determined by nano-indentation for 
bare metals match “accepted” values.

Quantity Erbium Scandium Titanium Yttrium Zirconium

Young’s 
Modulus 
(GPa)

77+/- 7

(70) (74)

144 +/- 15

(116)

147+/- 13

(64)

154 +/- 20

(68)

Shear 
Modulus 
(GPa)

31 +/- 4

(28) (29)

58+/- 8

(44)

59 +/- 6

(26)

61 +/- 15

(33)

Bulk 
Modulus 
(GPa)

50 +/- 3

(44) (57)

96 +/- 5

(110)

98 +/- 4

(41)

103 +/- 6

()

Black = nano-indent values
Red = “accepted values”



Determined moduli for hydrides compared 
to the VASP calculated values.

Quantity ErD2

(cubic)

YD2

(cubic) 

ScD2

(cubic)

LaD2

(cubic)

TiD2

(tet.)

ZrD2

(tet.)

Young’s 
Modulus 
(GPa)

148 +/- 20

(147)

135 +/- 20

(124) (164)

36 +/- 6

()

100 +/- 15

()

175 +/- 20

()

Shear 
Modulus 
(GPa)

60 +/- 10

(60)

55 +/- 10

(50) (68)

14 +/- 3

()

40 +/- 7

()

70 +/- 10

()

Bulk 
Modulus 
(GPa)

97 +/- 4

(87)

90 +/- 7

(82) (96)

24 +/- 3

()

66 +/- 5

()

115 +/- 7

()

Black = nano-indent values
Red = calculated values



Graphical Summary of Results
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•C44 resistance to shear on 
{100} in <0kl>→ σyz = C44εyz

•(C11-C12)/2 resistance to 
shear on {110} in <-110>



What is the degree of anisotropy?
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•Zener’s Elastic-Anisotropy 
Index for cubic materials

A=2C44/(C11-C12)

The ratio of the two extreme 
elastic-shear constants

•“..higher crystal symmetry may 
relate to higher

elastic anisotropy” ,
Ledbetter and Migliori, J. Appl. 
Phys., 100, 063516 (2006).



Conclusions about elastic constants

• Nano-indentation gives good results for “most” 
materials.

– Issues are probably due to sample/substrate 
problems and not the technique.

– Computational results are generally within error.

• Definitely need to expand material list beyond 
cubic crystals.



Implications for helium retention.

• What does it say about helium retention and 
bubble shape?
– Important piece of the puzzle but need more 

information:
• Tackle more materials

• Re-do some experimental results

– Calculate and measure the Surface Energy

– Bubble shape and size must be a balance between 
four energy components

• Atomic helium site occupation energy

• Surface Energy

• Elastic Energy

• Dislocation loop punching energy


