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the crystal structure.

e amount of helium released depends on
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he majority of the generated helium is
stored in helium bubbles.

* Helium bubble shape depends on crystal
structure.
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Total Energy

\

Calculating the lattice constant is easy.
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results for the metallic lattice constant
calculations are excellent.

Metal/Values Erbium Scandium Titanium Zirconium Yttrium Palladium

Calculated a=3.586 a=3.321 a=2.9390 a=3.2390 a=3.6605 a=3.9598

(A) c=5.5578 c=5.163 c=4.646 c=5.1780 c=5.6721

Experimental a=3.5588 a=3.309 a=2.9508 a=3.2320 a=3.6474 a=3.8907

(A) C=5.5874 c=5.2733 c=4.6855 c=5.147 c=5.7306

Percent Error a=0.76% a=0.36% a=0.399% a=0.2% a=0.36% a=1.77%
c=0.53% c=2.1% c=0.8% c=0.6% c=1%

*For cubic and hexagonal systems the
agreement is excellent.
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%I‘ he results for the metal hydride lattice

constants are also excellent

Metal/Values ErH, ScH, YH, ZrH, TiH, LaH,
Calculated a=5.1295 a=4.7815 a=5.2168

(A)

Experimental a=5.123 a=4.78 a=5.205

(A)

Percent a=0.13% 0.03% a=0.22%

Error

*Cubic systems show excellent agreement.

Still having a few difficulties with the tetragonal

systems.
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}‘ How to calculate elastic constants:

stress-strain |

0 is the stress
e £ is the strain

* 0;; is the stress acting in the x; direction on the
plane perpendicular to the x; direction.
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—i=j are axial stresses
— i#] are shear stresses

* 0ji = 2 Ciiki &

— Cjj =elastic moduli
or elastic constants
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# How to calculate elastic constants:

stress-strain |l

* The stress, o, and the strain, €, must be
symmetric. 0y =) Cyy &

* The nature of the c;;, depends on symmetry of the
crystal.

* Short hand
— C4411 — C44 relations between o,, and ¢,
— C44992 — C4, relations between o, and g,,

— Cy323 — Cy4 relations between o,; and €,,
— In general, 11—1; 22 —2; 23=32 —4;13=31 —5;12=21 —6
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How to calculate elastic constants:
stress-strain Il

 Maximum of 21 elastic constants for a crystalline body.
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» Cubic crystals the elastic constants reduce to just three

independent numbers
— €417C22=C33
— €447C55=Cgp

— €412¥C43=Cy3
— All other c¢; =0

axial compression
shear modulus
modulus for dilation on compression
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}‘ How to calculate elastic constants:

stress-strain IV

. r a a a a
* Know lattice (primitive) vectors ! Ir "y Mz
dy |=| dyy Gy, 4y, |®
d; ds, d3, dj, z
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}‘ How to calculate elastic constants:

stress-strain V

» Using Hook’s law, if € are small, can expand
energy in terms of €.

E = E+VZGe+ VZZCUI +9(e%)

i=1 j=1

* For cubic crystal, energy relation is

1 2 2 2 1 2 2 2
E=E, +§cn[e1 +e, t+e;|+c,lee, +ee, +e3el]+§c44[e4 +e; +e |
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} How to calculate elastic constants:

stress-strain VI
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A A
#alculated elastic constants for the cubic

phases of some di-hydrides.

Quantity ErD, YD, ScD,
C,, (GPa) 146 122 167
C.,(GPa) | 58 61 60
C,(GPa) | 74 69 79

B=1/3 (C,, + 2C,,)

G = 5(Cy; - C4,)C4/[4C,, + 3(C44-Cy5)]

Gy = (C44-Cq2 + 3CL)/5
Gy = (GrtGy)/2
Y = (9BG,)/(3B + Gi.)
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o

etermined moduli for hydrides compared
to the VASP calculated values.

Quantity ErD, YD, ScDh, LaD, TiD, ZrD,
(cubic) (cubic) (cubic) (cubic) (tet.) (tet.)

Young’s 147 124 164

Modulus

(GPa)

Shear 60 50 68

Modulus

(GPa)

Bulk 87 82 96

Modulus

(GPa)

Red = calculated values
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Nano-indentation and finite element
modeling

¢ Material properties of the thin films
are deduced using FEM modeling.

¢ Properties of the indenter and
underlying layers and substrate are
fixed at known values.

¢ Y and E for the layer are varied until a
good fit to experiment is obtained.

= Tip yielding, stress, friction are
all modeled.

e Two primary simplifications:

= 2-dimensional axi-symmetric
meshes

= jSotropic elastic-plastic materials
with Mises yield criteria

Knapp, et al., JAP, vol. 85, p.1460 (1999)

(mN)

Force

unloading

100
Depth (nm)

e Hardness of the layer material
is determined by an additional
simulation of a “bulk” sample of
just the layer material:

Y E—
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Sample configuration
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duli determined by nano-indentation for
bare metals match “accepted” values.

Quantity | Erbium | Scandium | Titanium | Yttrium Zirconium
Young’s | T7+/-7 144 +/- 15| 147+/-13| 154 +/- 20
Modulus | (70) (74) (116) (64) (68)

(GPa)

Shear 31 +/- 4 58+/- 8 59 +/- 6 61 +/- 15
Modulus | (23) (29) (44) (26) (33)

(GPa)

Bulk 50 +/- 3 96 +/- 5 98 +/- 4 103 +/- 6
Modulus | (44) (57) (110) (41) ()

(GPa)

Black = nano-indent values

Red

= “accepted values”
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o

etermined moduli for hydrides compared
to the VASP calculated values.

Quantity ErD, YD, ScDh, LaD, TiD, ZrD,
(cubic) (cubic) (cubic) | (cubic) | (tet.) (tet.)

Young’s 148 +/- 20 135 +/- 20 36 +/- 6 100 +/- 15 175 +/- 20

Modulus (147) (124) (164) () () ()

(GPa)

Shear 60 +/-10 55 +/-10 14 +/- 3 40 +/- 7 70 +/-10

Modulus (60) (50) (68) () () ()

(GPa)

Bulk 97 +/- 4 90 +/- 7 24 +/- 3 66 +/- 5 115 +/- 7

Modulus | (87) (82) (96) () () ()

(GPa)

Black = nano-indent values
Red = calculated values @ﬁ:%ﬂi?a.
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Elastic Constants

Graphical Summary of Results
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What is the degree of anisotropy?

«Zener’s Elastic-Anisotropy
2.4 . .
| Index for cubic materials
2.2- - A=2C44/(C11-Cyp)
<
8., The ratio of the two extreme
g8 elastic-shear constants
<
= 1.8
& . «“..higher crystal symmetry may
N .
16- relate to higher
. elastic anisotropy” ,
1.4

- T eon 5 - Ledbetter and Migliori, J. Appl.

Material

Phys., 100, 063516 (2006).
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Conclusions about elastic constants

* Nano-indentation gives good results for “most”
materials.

— Issues are probably due to sample/substrate
problems and not the technique.

— Computational results are generally within error.

 Definitely need to expand material list beyond
cubic crystals.
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 What does it say about helium retention and
bubble shape?
— Important piece of the puzzle but need more
information:
* Tackle more materials
 Re-do some experimental results
— Calculate and measure the Surface Energy
— Bubble shape and size must be a balance between
four energy components
« Atomic helium site occupation energy
* Surface Energy
 Elastic Energy
* Dislocation loop punching energy

Implications for helium retention.
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