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Determining Elastic and Plastic Strains

e[ ocalization Predictions vs. Observations

Compaction Bands in Aztec Sandstone,
from Sternlof et al., 2004
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Microstructural Deformation
& Failure Modes In Sandstones

Transitional Regime:
Compaction Bands

>

Brittle Regime:
Axial intragranular cracking,
shear-induced debonding;
Shear Bands

/

Cataclastic Flow:
Grain crushing,

/

Mises Equivalent Shear Stress, 1

pore collapse;
/ : : 74 ) / Uniform
Axisymmetric compression / compaction
(ASC) tests: o, > o0, = 0y /
i
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Overview of “Cap” Plasticity

Axisymmetric Compression Tests

c=1,/3=(c,+20;)3
t=1J,"2=(0,-03)/(3")
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Localization Theory

» Derives from Rudnicki and Rice (1975) formulation
* Models formation of a planar band of localized strain

 Inception of band is
bifurcation from
homogeneous deform.
* Attributable to a
constitutive instability
= Single yield surface
(depends on /; and J,,
= Non-associated flow

Mises Equivalent Shear Stress, ¢

Yi - .
SUL;Z{ie Dilatant: 8, >0
Compactant: 3, p <0

4

es A9 ...
Mean Stress, 0= 3L, = 30, Sandia

/\m +-. Predicts mode of occurrence and band angle, 0

@ Sandia
National
Laboratories



Axisymmetric
Compression:
0,>0, =0,

Values of 3, u reported by:
O Olsson (1999)

O Wong et al. (2001)

Normality
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*Porosity ~ 28%

*Fine to medium
grained (~0.2mm)

*70-80% quartz
*Weakly lithified

* Studied previously

(Vinegar et al., 1991; Olsson
and Holcomb, 2000;
DiGiovanni et al., 2001;
Holcomb and Olsson, 2003)
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Elastic Moduli: Stress and Strain Dependence

a0

+ measured shear strain
= Unlioading data fits
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*Shear modulus G is local slope of T=Yy
curves for unloading loops and final
unloading, at constant mean stress.

G decreases with Y, at constant T, and

increases with T at constant Y,
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Energy dissipated due to [l Energy diss'ipated .
plastic deformation, &* G due to elastic-plastic

------------ coupling, &

-1 Recovered [
"] energy due |l
-2+ to elastic 1

_-.-0--"-] unloading

Schematic of uniaxial loading of an elastic-
perfectly plastic material with elastic-plastic
coupling (modulus decreases due to plastic
strain). Elastic strain for the original modulus is
&', plastic strain is €4, and coupled strain is & (&2
is ignored here for simplicity).

-1 .2 <3 -4
E;, =&, TE, TE, TE,

y
.1

€, =Ciuom
ac..
2 ijkl .
gl-j - P O k1O mn
Gmn
3 Cim .
g° = gf
) ki
v ogPf mn
mn

-4 .p i :
Eij =& (plastic strain)

y
@ Sandia
National
Laboratories



80

70 - #

00 A "'ﬂ {

50 3 f 4 '
g
= 40
(o 30 1 --- measured strains

--- elastic strains (no coupling)
20 1 Oy --- calculated elastic strains
10 --- calculated plastic strains
O 'l I I I I
0 0.02 0.04 0.06 0.08 0.1

’y, Shear Strain

@ Sandia
National
Laboratories



Strain Partitioning During Hydrostatic Compression
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volume strain

This is due to influence of
microcracks (formation of which
is observable by acoustic
emissions, AE) on elastic bulk
modulus

AEC

ount Rate, #/s

Nearly a third of total volume
strain is attributable to elastic-

plastic coupling in this

experiment
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O (MPa)

T (MPa)

More Examples
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£p, plastic wolume strain
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u calculation

T (MPaj)

100

G (MPa) G (MPa)

u is slope of yield surface, here taken to be
contour or constant plastic shear strain (A) or
contour of constant plastic volume strain (B)
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Localization Parameters and Band Angles for Castlegate

Elastic-Plastic Coupling

exper. B H v G hcr 0
41* 1.10 0.91 0.24 4815 -4823 69.0
14* -0.74 0.42 0.18 4597 389 34.4

13b# =217 -0.36 0.29 4424 2360 0.0
No coupling

41* 1.15 1.02 0.12 8058 -7626 66.6

14* -0.26 0.42 0.14 8918 -1397 40.1

13b* -0.73 0.21 0.15 9263 353 31.3

13b# -0.73 -0.36 0.15 9263 -396 22.2

*u and h, calculated assuming shear yield surface
#u and h_, calculated assuming cap yield surface

0 is in degrees, G and h., in MPa

- .
1 > -
.
) .
Al LA
- LR 1 !
- 18
- o LI ¢
" .
" at e - e vafa o]
. P Y
i P k.
U. R
. \1 7
+
st e g -
'.'. L] - .
g - . W
4 ¥ »: r L]
:
L LE - -
0 - . -
- 2
3 Pl S
! e
E - 4 -
hJ 1] .
. . . .
.
4 L2 L]
180
Ex
: 4 140 7
.
120 .
100
B0 A
&0
0 1
B

In situ band orientation
determination by AE
locations (exper. 13)

@ Sandia
National
Laboratories



EREA Mo :_::

Range of Observed  and u

for Castlegate Experiments:

>y
ey
233350
B Y

e
PR RY
e
e,
),
B R P R
20030030020 005 0
B R P P AN

2022 gaad a2 a a2 e

2

22 e

NN

R EEEEEE R T, I | 3 \
43 $324299443 *{N / /‘ .—‘»‘ .
- v

. ‘b‘b‘b‘{}‘ /

Coupled (---) And Uncoupled (---) Cases
Normality
2
0 = 90°
B+u=3J3/2

/)

(—/3/2,—3/2)

Values of 3, u reported by:
O Olsson (1999)

O Wong et al. (2001)

-/

# Dilation Bands

N
h
-
»

Shear Bands

AN

.. - =
7.3
; B,
2222325
SRR
“re ﬁ‘b‘b‘b‘b‘b‘b‘b‘\b\

[, o e e L e

Compaction Bands %

rrrrrrrrrrr*‘"
o SN N —
RN

P

0=0°
B+u=-3

EREES PR R R

(&)

Sandia
National
Laboratories



Conclusions

’%"" = b 3 ‘Observed degradation of elastic
| moduli with plastic deformation

Elastic-plastic coupling
influences localization
predictions

*First time localization theory
has successfully predicted
occurrence of compaction
localization in experiments,
using experimentally determined
constitutive parameters.

Sternlof et al., 2004 _—
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 Elastic parameters (tangent moduli)

* Hydrostatic Pore Collapse

 Limiting Shear Surface (incl. kinematic hardening)
« Cap Curvature

* Non-associative plastic flow

Sandia Geomodel
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Geomodel Simulations of Castlegate Experiments

Axial stress (MPa)

T (MPa)

=]
=]

-16.00
-14.00
-12.00
-10.00
-5.00
-6.00
-4.00
=200

madd
lateral

A

0.00

0006 0004 0002 0000 0002 0004 D006

Strain (axial, radial, volume)

« data
4 8 sirmulation

+re

B

¥ (total shear strain)

0002 0004 0006 <0008 0,010

<001z

0.0000 -0.0010 -0.0020

€ (volume strain)

-0.0030

T (MPa)

60

50

40 4

30

20

10 4

Yield and Failure Surfaces

Geomodel
failure surface -

\,D"/
,/’ ™
’D'
at Geomodel /

calculated

yield surface
“~

Castlegate Data

[ ] Peak stresses
@ Initial Yielding

B Yielding at €, =
.005

50 100 150

l, = 36 (MPa)

300 350

@ Sandia
National
Laboratories




