SAND2008- 0844C

The Cognitive Foundry:
A Flexible Platform for Intelligent Agent Modeling

Justin Basilico, Zachary Benz, Kevin R. Dixon

Sandia National Laboratories
P.O. Box 5800 MS 1188
Albuquerque, NM 87185-1188
{jdbasil, zobenz, krdixon} @sandia.gov

Keywords: cognitive model, machine learning, agent simulation

ABSTRACT: The Cognitive Foundry is a unified collection of tools for Cognitive Science and Technology
applications, supporting the development of intelligent agent models. The Foundry has two primary components
designed to facilitate agent construction: the Cognitive Framework and the Machine Learning package. The Cognitive
Framework provides design patterns and default implementations of an architecture for evaluating theories of
cognition, as well as a suite of tools to assist in the building and analysis of theories of cognition. The Machine
Learning package provides tools for populating components of the Cognitive Framework from domain-relevant data
using automated knowledge-capture techniques. This paper describes the Cognitive Foundry with a focus on its

application within the context of agent behavior modeling.

1 Introduction

The Cognitive Foundry is a unified collection of software
tools for Cognitive Science and Technology (CS&T)
applications. CS&T is a developing field at the
intersection of cognitive science, computer science, and
engineering that takes fundamental concepts from
cognitive science and neuroscience and deploys systems
implementing these ideas. To further the goals of this
multidisciplinary field, we have designed the Foundry to
be a robust, extensible platform to support research, rapid
prototyping, and system deployment, while adhering to
rigorous software-engineering principles. Instead of
pushing a single theory of cognition, the Foundry contains
reusable software components and algorithms designed to
support a wide variety of development needs. The
software architecture of the Foundry promotes reusability,
maintainability, and cross-platform compatibility, without
sacrificing computational resources by leveraging best-in-
class numerical packages.

2 Why the Cognitive Foundry

As the Sandia National Laboratories CS&T program grew
from its infancy, the use cases for our cognitive-modeling
software evolved as well, driven by both researcher- and
customer-centric needs. For basic-research applications,
researchers wanted a reusable toolkit that allowed the
rapid prototyping and visualization of new ideas and
hypotheses in modeling cognition, as well as statistical-
validation techniques to compare results against a
standard battery of existing results from the literature.
Our customers have expressed an increasing interest in
automatically populating cognitive models through

automated knowledge-capture algorithms, processing
large amounts of data efficiently, parallel and distributed
computation, and verifiable software-development
processes. We meet these seemingly divergent
requirements by creating a graduated set of programmer
interfaces that enable both research experimentation and
system deployment, and the Foundry assists users by
providing a set of tools that accompany those interfaces.
For example, if a particular project would benefit from
parallel computation, then the user can implement the
rather simple methods associated with the Concurrent
Cognitive Module interface. The Foundry then
automatically provides the mechanisms to execute the
code in a parallel fashion, with no additional burden
placed on the user. We chose this graduated-interface
strategy to support both the general case by providing a
robust set of core functionality while also providing the
infrastructure for rapidly constructing special-purpose
applications may require more intricate or onerous
functionality. =~ The manifestation of the Cognitive
Foundry philosophy is that we provide a number of
interfaces, some of which are easy to implement, while
others may be more time consuming. The more
interfaces, or functionality, that a Foundry developer can
implement, the more Foundry tools can be brought to bear
on the problem. Thus, users can select the parts that
provide the best benefit to a specific project. The
Foundry’s Cognitive Framework provides a reusable
framework for building agents and experimenting with
cognitive simulation. The Machine Learning package
provides a large library of powerful learning algorithm
implementations that can be used on their own or to create
components of the Cognitive Framework.

-

Cognitive Model State \
(Current)

Cognitive Model

Cogxel State
(Blackboard)

3 Cognitive
Module

Cognitive
Module
State

k

Figure 1. Cognitive Model components. One object
encapsulates the entire state of the model. The design
emphasizes modularity and state encapsulation.

2.1 Benefits of the Cognitive Foundry

One of the primary lessons learned from the maturation of
Sandia’s CS&T program is that the Cognitive Foundry
must provide coverage and support of a cognitive system
from idea to deployment, not just a cognitive simulation.
The Cognitive Foundry’s modularity allows users to
determine which components are necessary, or provide
value, to a particular project by selecting the tools used to
solve common cognitive-systems tasks, while being
assured that the components have been verified and
validated using rigorous software-engineering quality
standards. The Foundry also provides a well-defined path
for components to incorporate the latest research ideas
and transition them into a deployed system. Applications
built on the Cognitive Foundry’s Framework and
Machine Learning packages can immediately make use of
new modules for cognitive simulation and new algorithms
that conform to the common set of interfaces.

2.2 Communicating with the Cognitive Foundry

The Cognitive Foundry is written in the Sun Java 1.5
programming language. We have also developed several
other ways to interoperate with the Cognitive Foundry
from non-Java applications. For example, we have
created a native-machine interface that allows
applications written in other programming languages,
such as ANSI C/C++ or Microsoft .NET (C#, Visual
Basic) to call directly into the Foundry API. The
Cognitive Foundry also has a Network Interface library to
facilitate connecting to, viewing, controlling, and
launching models over a network. Finally, The Cognitive
Foundry has a graphical user interface to support the
inspection or manipulation of cognitive models during
creation and execution.

2.3 Design Methodology

On a philosophical level, the design of the Cognitive
Foundry has followed a graduated interface approach.
That is, the Cognitive Foundry is built on top of a set of
well defined, hierarchical interfaces. For example, the
Cognitive Foundry defines the functionality that a

Cognitive Model (a memory space, collection of modules,
etc.) and Multivariate Minimization Algorithm (an
objective function, an iteration loop, etc.) must possess.
The Cognitive Foundry then provides one or more default
implementations of these interfaces. However,
developers can always create their own tailor-made
implementations if existing ones do not meet their needs,
allowing researchers to test new ideas and hypotheses

quickly. Since other tools in the Cognitive Foundry
provide functionality at the interface level, new
implementations can automatically exploit existing

functionality provided by other components in the
Foundry by conforming to a defined interface. There are
also benefits to this interface-centric component-based
approach. It provides an easy mechanism for customizing
existing object implementations in the Foundry. It also
gives the ability to pick the specific objects from the
foundry that are useful for a certain application. Finally, it
creates an integration point for many applications, which
defines an easy transition path from research to
deployment.

3 Cognitive Framework

The Foundry’s Cognitive Framework is a modular
software architecture for cognitive simulation designed
for use in CS&T applications. The Cognitive Framework
itself is also a collection of interfaces, which allows
Framework users to either leverage the existing tools in
the Framework or specify different implementations to fit
their specific needs in order to testing new ideas and
hypotheses.

3.1 Cognitive Model

The Cognitive Framework is designed so that different,
and possibly competing, elements of a “theory of
cognition” can be instantiated as desired. This is
accomplished by having a Cognitive Module perform
some aspect of a psychologically plausible cognitive
process. A Cognitive Model, then, contains a collection
of Cognitive Modules whose purpose is to instantiate
some aspect of cognition. The main components of a
Cognitive Model are shown in Figure 1. Conceptually,
Cognitive Modules are the workhorse classes inside a
Cognitive Model. A Cognitive Model and its
corresponding Cognitive Modules use a single central
container to store all state information, in a Cognitive
Model State. The state contains the sufficient information
needed to allow a Cognitive Model to resume execution
later, or on another machine, without altering the results
of a simulation. Furthermore, the Cognitive Model State
can be sent across a network to distribute computation
and exploit the parallelization inherent in many cognitive
agent simulations. The Cognitive Framework supports
the serialization of Cognitive Models using a binary

format, human-editable

values.

XML, or comma-separated

3.2 Cognitive Module

The Cognitive Module interface gives users fine-grained
control of what aspects of a “theory of cognition” are
incorporated into a particular Cognitive Model. The
primary functionality of a Cognitive Module is contained
in its “update” method. The update method is given the
current Cognitive Model State, along with the previous
state of the Cognitive Module and the set of current
sensory inputs. The update method of each Cognitive
Module returns its state for the next time step. Cognitive
Modules can pass information to one another through the
Cognitive Model State object, which contains a
blackboard-like component where information can be
posted and read by any Cognitive Module.

3.3 Cognitive Element (Cogxel)

The Framework operates on a key data structure interface:
the cogrel. Cogxel stands for “cognitive element” and is
modeled after the word “pixel,” which means picture
element. A cogxel is the fundamental unit of data in the
Cognitive Framework. Cogxels normally reside in the
Cognitive Model State (blackboard), as they represent the
overall state of the model. Cogxels are accessed by a
high-level “semantic label” that describes the data
contained by cogxel, such as “Heart Rate” or
“Context12345.” Cogxels are in turn stored in a manner
that allows constant-time lookup of the data contained by
the cogxel, allowing efficient retrieval along with
semantically meaningful storage. A default cogxel
implementation consists of a semantic label and a scalar
activation level. However, being an interface, other
applications have created their own cogxel
implementations that use bindings, activation flags, etc.

3.4 Lightweight Implementation

The Cognitive Framework Lite is an implementation of
the Cognitive Framework interfaces that abide by the
specifications set forth by our customers and stakeholders.
It is specifically designed for having many agent models
within a larger simulation. It is a “lite” version of the
interfaces because it does not allow for the dynamic
addition or removal of modules while the model is
running. This means that all modules must be added to the
model at its creation time. This allows for compact data
structures and a simple, fast update loop within the model.
The “lite” version of the model can run within a high-
performance computing (supercomputer) environment,
with many models executing on a single processor with a
minimal memory footprint. The “lite” implementation
also contains lightweight implementations of some basic
cognitive modules, such as a semantic network and
perception modules.

3.5 Concurrent Implementation

Cognitive Models requiring significant computational
resources can employ a concurrent implementation of the
Cognitive Framework. For example, we are currently
developing a theory of analogical reasoning using
physiological models of visual and prefrontal cortex that
employs large numbers of computational units
representing cortical columns in the human brain. The
concurrent implementation provides a means for
distributing computation in parallel across available
computing resources on local machines, namely multi-
core and multi-processor computers. It also provides the
basis for future extensions of the Cognitive Framework to
support distributed computation across networked
computational resources.

The concurrent implementation breaks up the update
method of a Cognitive Module into three steps: read state,
evaluate, and write state. A concurrent cognitive model
can then operate as follows: all modules read required
input state information sequentially, followed by parallel
execution of each module’s evaluate method, with the
update method completed by having each module write
out its state information in sequence. The Cognitive
Foundry provides a default implementation of this parallel
computation, which employs a thread pool with a user-
defined number of threads onto which module evaluations
are scheduled for execution. In this way, a user may fully
utilize multiple cores and processors on a desktop
computer for model execution. Future implementations
will allow distributed computation through evaluations on
network compute resources.

3.6 Perception Module

Every CS&T application needs a way to glean
information from the environment. The Cognitive
Framework accomplishes this by specifying a perception
module, capable of taking some external data source and
transforming relevant information from it into a form that
other modules can process (i.e., cogxels).

3.7 Manual Knowledge Elicitation and Automated
Knowledge Capture

Perhaps the most intricate and application-specific step in
creating a Cognitive Model is providing the proper set of
parameters needed to configure the Cognitive Modules.
Some Cognitive Modules can use predefined parameter
sets, but most need to be loaded with domain-specific
information. In general, there are two approaches to solve
this problem: manual knowledge elicitation and
automated knowledge capture. Manual knowledge
elicitation involves a structured interview with a subject
matter expert and the subsequent encoding of this
information into a form that the Cognitive Foundry can

understand. The Cognitive Foundry provides support for
manual knowledge elicitation through both user-interface
components and human-readable input file formats, such
as Microsoft Excel and XML. Not surprisingly, manual
knowledge elicitation is quite labor intensive and
intractable for application domains where there are many
interacting factors, as the combinatorics get out of hand
quickly. Furthermore, slight changes in the application
domain require a complete retooling of the elicitation
process, generally resulting in another interview of the
subject matter expert. The alternative approach,
automated knowledge capture, involves collecting a
relevant set of data in the application domain and then
using that data along with a set of machine-learning, or
data-mining, algorithms to create the necessary
information needed for the Cognitive Module. The
Cognitive Foundry provides support for this approach
through the Machine Learning package, discussed in
section 4.

The main constraint that automated knowledge-capture
techniques have is that they all require relevant data for
the problem they are addressing, usually in large amounts.
If no relevant data exists, or can be readily collected, then
automated knowledge-capture techniques may not be of
much help in solving the problem. However, if a user has
access to, or a mechanism to collect, relevant data, then
an automated knowledge-capture technique probably
exists that can accurately populate a cognitive model to
predict or categorize the problem at hand. In some cases,
real data may have to augment with synthetic data to
provide enough support to the automated knowledge-
capture algorithms. However, there exist procedures for
this augmentation as well.

The Foundry contains a Framework-Learning integration
package was designed so that components of the
Cognitive Framework package could be used in
conjunction with machine-learning algorithms. In other
words, this provides users of the Cognitive Framework
inline access to the large collection of automated
knowledge-capture algorithms from the Machine
Learning package by automatically populating Cognitive
Modules from data without the tedious process of manual
knowledge elicitation. By using the modules of the
Framework-Learning package, a developer can
automatically create models of behavior and cognitive
processes gathered from disparate data sources.

3.8 Cognitive Model Factory

A Cognitive Model Factory is a container that holds the
complete recipe for making a Cognitive Model: the full
list of modules and all of their parameters. Having a
factory allows multiple copies of the same model to be

instantiated and be provided different inputs. It also
provides a mechanism for modules to share static
information across Cognitive Model instances so that the
data does not have to be copied, thus saving memory in
large-scale simulations. To borrow an example from
physics, all oxygen-16 molecules are identical; they have
the same static parameterization. To create a simulation
of many interacting oxygen molecules, it is not necessary
to copy the parameterization of an oxygen molecule for
each model; they can share this static information. This
saves memory and the needless computation used to copy
the redundant parameterization. Cognitive Model
Factories provide an analogous functionality, allowing
Cognitive Modules to share static information across
many instances.

3.9 Using the Output of a Cognitive Model

The final step in integrating a Cognitive Model into a
CS&T application is to determine how to use the output
of the model for the application. By this, we mean using
information contained within cogxels to perform some
sort of behavior or action for an agent within its
environment. Typically, this is accomplished by
determining the semantic labels for the cogxels containing
the relevant output information for generating actions.
However, an application can access and make use of any
cogxel in the Cognitive Model State, which means it has a
vast amount of information regarding the internal state of
the Cognitive Model to make use of when generating an
action.

The Cognitive Foundry contains graphical user-interface
tools that can display the outputs, and internal state, of a
Cognitive Model. While a predefined user interface may
not be applicable for a particular end-user application,
developers often find it helpful for rapid-prototyping or
debugging purposes. Following the design philosophy of
the Foundry, the piece components of the user interface
may serve as the basis for various end-user applications.

4 Machine Learning Package

The Cognitive Foundry’s Machine Learning Package
provides a wide variety of optimized, verified, and
validated general- and special-purpose algorithms for
machine learning: the analysis and characterization of
large datasets, function minimization, parameter
estimation, prediction, and categorization. The package is
highly extensible, meant for allowing the rapid-
prototyping of applications based on machine learning
and the development of new or experimental algorithms
and architectures. Typically, in machine learning, there
are various conflated components: the object being
created, the learning algorithm used to create the object,
the data upon which the algorithm operates, the

performance measure, and statistical validation. For
example, we can create a neural network using gradient
descent with a mean squared-error cost function.
However, there are many neural-network architectures
(feedforward, recurrent, different activation functions,
etc.), many different learning algorithms (conjugate
gradient, Levenberg-Marquardt, Quasi-Newton, etc.),
many different cost functions, and many validation
techniques. Unless these components are decoupled, the
combinatorics quickly becomes onerous. In keeping with
the design philosophy of the Cognitive Foundry, the
Machine Learning package separates each of these
components and eliminates the need for Foundry users to
write special-purpose code. This allows users of new
functions (e.g., neural-network architectures) to use
existing learning algorithms and, conversely, creators of
new learning algorithms to test their ideas on different
functions.

4.1 Why a Machine Learning Package?

We created the Machine Learning package to support and
unify the projects that incorporate machine learning into
their applications. Our research group had several
implementations of similar machine-learning algorithms
written in different programming languages, with slight
variations on similar approaches. We created the Machine
Learning package to be a common repository of these
algorithms, so that they may be easily integrated into
different applications and projects. Due to the decoupling
of the learning algorithm from the object being learned,
the Machine Learning package allows the rapid
prototyping and experimental testing of different
algorithms, approaches, and function approximators and
categorizers. The package accomplishes this through the
systematic use of interfaces and generics to encapsulate
the needs of each algorithm, including their inputs,
outputs, and parameterizations. We followed an object-
oriented design for the entire package so that the different
algorithms utilize common, interchangeable
subcomponents, such as cost functions and statistical
validation. This approach greatly simplifies the
integration of exiting machine-learning algorithms to new
problems and, conversely, to apply new machine-learning
algorithms to existing problems and datasets. We did this
to focus on experimenting with different algorithms and
parameterizations to create machine-learning systems
embedded into CS&T applications. The design of the
Machine Learning package makes wide use of Java
generics and, together with the decoupling of the piece
components of a machine-learning system, the source
code tends to be very similar to pseudo-code from
textbooks and research papers. This has the result of
greatly increasing the reusability of elements in the
package and increasing the level of verification and
validation of the algorithms.

Target
Data

y

Cost
Function

Supervised
Learning
Algorithm

Function
Approximator

Parameters

Statistical
Validation

Figure 2. Typical supervised learner design pattern.

4.2 Learned Functions

One of the key concepts of the Machine Learning package
is the separation of the machine-learning algorithm from
the function created by the algorithm, which is typically
some form of function approximator or categorizer. For
example, consider a prototypical function approximator,
the artificial neural network. Many machine-learning
algorithms can estimate locally optimal parameters for
neural networks, such as gradient descent, genetic
algorithms, and inverted quadratic line search. However,
each of those machine-learning algorithms can estimate
the parameters of a much broader class of function
approximators. Separating the function approximator
from the machine-learning algorithm means that we only
have to write learning algorithm once, instead of the
combinatorial explosion that occurs in the cross product
of function approximators and learning algorithms. The
package contains many standard and specialty function

approximators such as artificial neural networks, linear
systems, dynamical systems, k-nearest neighbors,
polynomials, categorizers, decision trees, and mixture of
Gaussians. Furthermore, the Cognitive Foundry allows
developers to create their own functional forms, or to
chain together existing functions, to create new functional
architectures, making the Machine Learning Package
highly extensible. A fundamental ability for function
approximators and categorizers is the ability to express
itself as a vector of tunable parameters. In this form,
many learning algorithms can automatically tune the
parameters of function approximators to achieve some
desired result.

4.3 Learning Algorithms

The main paradigm of the learning package is that a
learning algorithm is given a dataset from which to create
a new learned object, typically a function approximator or
categorizer. This creates a clear separation between the
input to the algorithm, the output from the algorithm, and
the parameters of the algorithm. There exist two primary
learning interfaces: the Batch Learner interface and the
Online Learner interface. Batch Learners operate only

after all data have been collected, while Online Learners
can operate concurrently as data are being collected.
Each of these learners operates in a supervised or
unsupervised manner. Supervised-learning algorithms
learn to generalize from example input-output pairings,
while unsupervised-learning algorithms attempt to
discover patterns in an unlabeled dataset to achieve some
goal (Duda, Hart, & Stork 2001). We will discuss each of
these techniques in the following sections.

4.3.1

Supervised-learning algorithms take a dataset of input-
output pairs and generalize them to as-yet-unseen inputs
by finding parameter sets that minimize a cost function.
Commonly these algorithms yield “function
approximators” or “regression” when the outputs are real
valued and “categorizers” when the outputs are discrete
valued. We provide a wide variety of supervised-learning
algorithms such as derivative-free algorithms, gradient-
based methods, linear regression, algebraic solvers, kernel
methods for both regression and categorization, and
decision trees for both regression and categorization. We
also have implemented meta-learning algorithms such as
ensemble methods, which demonstrate the power of
having a unified set of interfaces implemented by a
variety of learning algorithms. A typical design pattern
for a supervised learning algorithm is shown in Figure 2.

Supervised-Learning Algorithms

4.3.1.1

There is a class of parameter-estimation algorithms that
do not require gradient information to find a (locally)
minimum-cost parameter set of a function. That is, to
find the optimal solution, these algorithms only require
function evaluations. While these algorithms are the most
general, and can find optimal parameters for functions
that are highly nonlinear with nonanalytic or inexistent
derivatives, they tend to be less efficient than gradient-
based algorithms when gradient information can be
computed or approximated.

Derivative-Free Algorithms

We have implemented standard derivative-free algorithms
including Direction Set (Powell’s) Method, Downhill
Simplex (Nelder-Mead) algorithm, Genetic Algorithms,
and Simulated Annealing.

4.3.1.2

A more restrictive class of parameter-estimation
algorithms are those that require gradient information to
find a (locally) minimum-cost parameter set of a function.
These algorithms usually perform better than non-
gradient-based methods.

Gradient-Based Algorithms

We have implemented standard gradient-based algorithms
including Quasi-Newton Minimization (BFGS),
Levenberg-Marquardt Estimation, Conjugate-Gradient

Minimization, and Gradient Descent. Many of these
algorithms are also guaranteed to converge using
approximated differentiation procedures by estimating the
parameter Jacobian from function evaluations alone.
Oftentimes, gradient-based algorithms with approximated
derivatives are more efficient than derivative-free
algorithms. We have implemented automated
differentiation procedures for arbitrary functions to give
users the ability to try different gradient-based and
derivative-free algorithms.

4.3.1.3

Some special-case functions have closed-form or iterative
optimal solutions. These functions may be used with the
general-purpose algorithms mentioned above or with
solvers that exploit particular features of these special
functions. For example, we have implemented solvers for
linear regression, linear systems, linear dynamical
systems, multivariate Gaussians, and so forth. Not
surprisingly, these special-purpose solvers are typically
more efficient than general-purpose solvers for the same
functional form.

Special-Purpose Solvers

4.3.1.4 Kernel Methods

We have extensive support for kernel-based methods,
including a set of useful kernel functions and tools for
composing kernel functions. Kernels allow certain
machine-learning algorithms to extend to nonvector data
by defining a similarity measure between two inputs that
fulfill the properties of a kernel function. As such, the
library utilizes generics for kernels, which promotes the
creation of kernels for new data types, which may in turn
be plugged into existing kernel-based algorithms. We
have implemented several kernel-based learning
algorithms for categorization, regression, and clustering.

4.3.1.5 Ensemble Methods

Ensemble methods typically take a simple function and
combine several together to create sophisticated responses
to novel inputs, similar to voting schemes, game theory,
or stock-market collaboration. Ensemble methods are a
natural fit for the Cognitive Foundry’s Machine Learning
package because each machine-learning algorithm
conforms to a standard interface that allows algorithms
that create the same function to be interchanged, meaning
that algorithms conforming to the same interface can be
automatically combined wusing an ensemble-learning
algorithm that utilizes the output of each learning
algorithm. We have implemented several ensemble
methods including Bagging and AdaBoost.

4.3.2

Unsupervised-learning algorithms take a high-
dimensional space, potentially a “Big Data” problem, and

Unsupervised Learning Algorithms

map it to a low-dimensional and (hopefully) simpler
space. These algorithms are useful for understanding
complicated relationships, identifying statistical
regularities, and visualization. Our set of unsupervised
algorithms emphasizes principal components analysis and
clustering algorithms, such as k-means clustering,
agglomerative clustering, reductionist clustering, and
affinity propagation. The clustering algorithms are based
on a user-defined distance metrics that allow all
unsupervised algorithms to be easily adapted to new types
of data. We also exploit singular value decomposition and
eigenvector decomposition for dimensionality reduction.
For automated knowledge capture, unsupervised learning
algorithms, such as the clustering algorithms listed above,
are used to discover contexts, latent patterns, and
relationships for a Cognitive Model automatically.

4.4 Experiments and Performance Evaluation

We have created objects that automatically evaluate the
performance of learning algorithms against a dataset
using statistical-hypothesis testing techniques. These
“Experiment” objects automatically provide performance
confidence bounds using generally accepted validation
techniques, such as n-fold, leave-one-out (jackknife), and
bootstrap validation. For each experiment, a user specifies
the dataset, learning algorithms, validation methodology,
performance criteria, and summary statistics. The output
of an experiment is a confidence interval describing the
performance range and statistical confidence in the
experiment, making it easy to compare different learning
algorithms, algorithm parameters, or functional forms in a
statistically significant manner.

4.5 Statistics Package

The Cognitive Foundry also includes a comprehensive
Statistics package for performance analysis and statistical-
hypothesis testing, in addition to providing many
probability distributions for modeling purposes.

4.5.1

The goal of null-hypothesis testing is to determine if two
distributions of data are different in a statistically
significant sense. In other words, can the observed results
be due to chance? This gives a user of the Cognitive
Foundry a quantifiable confidence on the performance of
the system. Different statistical tests have different
assumptions, and it is necessary to find the test
appropriate for the problem at hand.

Null-Hypothesis Testing

This package contains the standard statistical tests such as
Student-t Test, Analysis of Variance (ANOVA or F-Test),
z Test, Kolmogorov-Smirnov Test, Fisher Sign Test,
Wilcoxon Signed Rank Test, Mann-Whitney U Test
(Wilcoxon Rank-Sum Test), Receiver-Operator
Characteristic, and others. Given the well-designed

structure of the Cognitive Foundry, it is easy to use the
appropriate null-hypothesis test for the given problems
facing a project.

4.5.2 Confidence Bounds

From estimates based on different datasets, it is often
useful to determine what possible values a parameter
could take. For instance, what is the likely room
temperature from a set of noisy thermometer readings?
Likewise, how many experiment subjects do we need to
achieve a margin of error of at most £3%? To answer
these types of questions, we have implemented the
standard confidence-bounds routines such as Student-t,
Gaussian, Chebyshev, Markov, and Bernoulli.

S Common Math Package

The main purpose of the Common Math package is to
provide a common baseline of useful mathematical
routines for building applications. Much of our research
and many applications require mathematical rigor, and the
main component of the Common package is to facilitate
matrix and vector computation, decompositions, and
solver routines, in both dense and sparse representations.
Dense-matrix computation tends to be faster than its
sparse-matrix counterpart, however, many “Big Data”
applications simply cannot wuse a dense-matrix
representation. The Cognitive Foundry gives users the
flexibility to choose the representation that best suits their
needs. The basic definitions of a matrix and vector are
interfaces, which gives Foundry users the freedom to
write their own Matrix package. The default Matrix
package in the Cognitive Foundry is based on the publicly
available Matrix Toolkits for Java (MTJ) library. MTJ
performs its computations, decompositions, and solvers
using callbacks into the best-in-class native libraries
LAPACK and BLAS, resulting in computational speeds
competitive with other heavily optimized computational
packages. If these native libraries are not available, MTJ
will redirect the calls to platform-independent Java
versions of LAPACK and BLAS, which are slower than
the native versions. This flexibility allows Cognitive
Foundry applications to wuse the most efficient
computational engine available, while preserving cross-
platform compatibility.

6 Related Work

Agent-based (Wooldrige & Jennings, 1995) and cognitive
simulation is an active area of research, and there are
many cognitive architectures in existence, such as ACT-R
(Anderson & Lebiere, 1993) and SOAR (Laird, Newell,
& Rosenbloom, 1987). The Foundry’s Cognitive
Framework builds upon previous research in cognitive
frameworks at Sandia by Forsythe and Xavier (2002).

However, unlike cognitive architectures that are built
around a single theory of cognition, the Foundry supports
modularity and experimenting with various aspects of
different theories of cognition. The Foundry is also
different in its focus on integrated automated knowledge
capture and the ability to create lightweight cognitive
components that are easy to embed in agents and stand-
alone CS&T applications.

There are also other libraries of machine-learning
algorithms in existence, such as Weka (Witten & Frank,
2005) and RapidMiner, formerly YALE (Mierswa, Wurst,
Klinkenberg, Scholz, & Euler, 2006). However, the
Foundry’s learning package differs from existing
packages in several ways. First, the Cognitive Foundry
does not force users to create datasets in a fixed data
structure for the machine-learning algorithms, such as
vector data. Instead, the Foundry algorithms are
implemented so that they can be used with a variety of
data structures by its use of generic type parameters. The
Foundry’s Machine Learning package is also different
because it spans the entire development cycle of a
learning system from data collection, analysis,
experimentation, rigorous tools for performance
validation, and deployment into applications, including
embedded systems. The package is targeted at making it
easy to embed the function created through learning into
other applications, such as agent models, which
distinguishes it from other packages that are focused
primarily on data mining and visualization.

7 Conclusions and Future Work

We have presented the Cognitive Foundry and its two
primary components that relate to agent behavior
modeling: the Cognitive Framework and Machine
Learning packages. For future work, we would like to
create a graphical user interface to increase the ability of
users with little computer-programming experience to
create cognitive models and machine-learning systems.
We also plan on adding new cognitive modules, learning
algorithms, and other packages, such as text and image
analysis, to the Foundry.

8 References

Anderson, J., & Lebiere,
Components of Thought.
Erlbaum Associates.

C. (1993). The Atomic
Hillsdale, NJ: Lawrence

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern
Classification. New York, NY: Wiley-Interscience.

Forsythe, C., & Xavier, P. G. (2002). Human emulation:
Progress toward realistic synthetic human agents. In

Proceedings of the 11th Conference on Computer-
Generated Forces and Behavior Representation.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987).
SOAR: An Architecture for General Intelligence.
Artificial Intelligence, 33 (1), 1-64.

Mierswa, 1., Wurst, M., Klinkenberg, R., Scholz, M. &
Euler, T. (2006). YALE: Rapid Prototyping for Complex
Data Mining Tasks. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-06).

Witten, I. H. & Frank, E. (2005) Data Mining: Practical
machine learning tools and techniques, 2nd Edition. San
Francisco: Morgan Kaufmann.

Wooldridge, M., & Jennings, N. R. (1995). Intelligent
Agents: Theory and Practice. In Knowledge Engineering
Review.

Acknowledgements

This work was partially funded by the Office of Naval
Research, Code 30. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy
under contract DE-AC04-94AL85000.

Author Biographies

JUSTIN BASILICO is a researcher at Sandia National
Laboratories in Albuquerque, NM. He received his B.A.
in Computer Science from Pomona College and his M.S.
in Computer Science from Brown University. His
research interests include machine learning, cognition,
information retrieval, statistical text analysis, and human-
computer interaction.

ZACHARY BENZ is a researcher at Sandia National
Laboratories in Albuquerque, NM. He received his B.S.
in Engineering at Harvey Mudd College and his M.S. in
Computer Science at the University of New Mexico. His
research interests are in cognition, cognitive modeling and
statistical text analysis.

KEVIN R. DIXON is a researcher at Sandia National
Laboratories in Albuquerque, NM. He received his B.S.
and Ph.D. from Carnegie Mellon University in Electrical
& Computer Engineering. His research interests are in
statistical pattern recognition, dynamical systems, human-
machine interaction and adaptive control.

