
 1 Copyright © 2014 by ASME 

Proceedings of the ASME 2014 International Mechanical Engineering Congress & Exposition 

IMECE2014 

November 14-20, 2014, Montreal, Quebec, Canada 

IMECE2014-40445 

THE IMPACT OF REFERENCE FRAME ORIENTATION ON DISCRETE ORDINATES 

SOLUTIONS IN THE PRESENCE OF RAY EFFECTS AND A RELATED MITIGATION 

TECHNIQUE 
 

 

 John Tencer 
Sandia National Laboratories 

Albuquerque, NM, USA 

 

 

 

ABSTRACT 
The discrete ordinates method is a popular and versatile 

technique for deterministically solving the radiative transport 

which governs the exchange of radiant energy within a fluid or 

gas mixture.  It is the most common ‘high fidelity’ technique 

used to approximate the radiative contribution in combined-

mode heat transfer applications.  A major drawback of the 

discrete ordinates method is that the solution of the discretized 

equations may involve nonphysical oscillations due to the 

nature of the discretization in the angular space.  These ray 

effects occur in a wide range of problems including those with 

steep temperature gradients either at the boundary or within the 

medium, discontinuities in the boundary emissivity due to the 

use of multiple materials or coatings, internal edges or corners 

in non-convex geometries, and many others.  Mitigation of 

these ray effects either by increasing the number of ordinate 

directions or by filtering or smoothing the solution can yield 

significantly more accurate results and enhanced numerical 

stability for combined mode codes.  When ray effects are 

present, the solution is seen to be highly dependent upon the 

relative orientation of the geometry and the global reference 

frame.  This is an undesirable property.  A novel ray effect 

mitigation technique is proposed.  By averaging the computed 

solution for various orientations, the number of ordinate 

directions may be artificially increased in a trivially 

parallelizable way.  This increases the frequency and decreases 

the amplitude of the ray effect oscillations.  As the number of 

considered orientations increases a rotationally invariant 

solution is approached which is quite accurate.  How accurate 

this solution is and how rapidly it is approached is problem 

dependent.  Uncertainty in the smooth solution achieved after 

considering a relatively small number of orientations relative to 

the rotationally invariant solution may be quantified. 

 

INTRODUCTION 

 One of the most commonly used radiative transport 

solution techniques is the method of discrete ordinates [1, 2, 3].  

It is so widely used largely because of the intuitive derivation of 

the equations and boundary conditions and the theoretical 

guarantee that it will converge to the correct solution as the 

number of ordinate directions goes to infinity.  Unfortunately, 

this convergence is slow and the method may produce 

unrealistically oscillatory solutions known as ‘ray effects.’  

These ray effects occur in a wide range of problems including 

those with steep temperature gradients either at the boundary or 

within the medium, discontinuities in the boundary emissivity 

due to the use of multiple materials or coatings, internal edges 

or corners in non-convex geometries, and many others.  These 

ray effects are inherent to the solution of the discretized 

equations and may not be reduced by further spatial mesh 

refinement.  In fact, spatial mesh refinement has been known to 

increase ray effects in some situations. 

There have been a number of techniques proposed to help 

mitigate ray effects [4, 5, 6].  The most straightforward 

approach is to simply increase the number of ordinate 

directions.  Unfortunately, this approach may involve 

prohibitive computational expense.  Schemes which add 

ordinate directions adaptively [7, 8, 9] present one potential 

solution to this problem.  A different approach involves filtering 

the solution to reduce or eliminate the spurious ray effect 

oscillations [10].  If the discrete ordinates method is to be 

modified more fundamentally, other discrete ordinate-like 

approaches which incorporate a continuous definition of the 

intensity in the angular space may be used [11, 12, 13, 14].  A 

separate, minimally intrusive approach is presented here which 
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exploits the spatial dependence of the ray effect oscillations on 

the definition of the global reference frame. 

THE DISCRETE ORDINATES METHOD 
The discrete ordinates method is a general term for a class 

of solution methods to the radiative transport equation that rely 

upon collocation in the angular variables.  The transport 

equation is satisfied exactly along a set of discrete directions 

and a quadrature rule is used to approximate any integrals over 

the angular space such as those in the in-scattering term or in 

the definitions of the radiative flux and flux divergence.  The 

choice of quadrature rule is left up to the user and may have a 

significant impact upon the quality of results obtained.  There 

has been substantial research effort applied to the development 

and analysis of quadrature rules for integration over the unit 

sphere [15, 16, 17].  The solution of the radiative transport 

equation using the discrete ordinates method may be found by 

stepping through the domain [11, 18, 19, 20].  This is easily 

accomplished in structured meshes.  However, in unstructured 

meshes, this solution technique may involve significant 

additional overhead.  The discrete ordinates method has also 

been applied to unstructured meshes using stepping schemes 

and other more general solution techniques [21, 22, 23].   

For a given angular quadrature, the integral in the in-

scattering term may be approximated as a summation as shown 

in Equation 1. 
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The weights and nodes of the quadrature scheme are iw    

and i  respectively.  The weights are normalized such that they 

sum to 4 . 

In this way, it is trivial to see that the transport equation 

may be written as a system of linear first order equations in the 

ordinate directions. 
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With diffuse walls, this equation is subject to the boundary 

condition 
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Since the equation is first order, a boundary condition is only 

required on half the boundary for each directional intensity.  

The boundary condition above only applies if Ω 0jn  .  That 

is, we only apply a condition on the intensity leaving an opaque 

surface. 

The first-order discrete ordinates equation has stability 

problems when using the Galerkin finite element method.  

Equation 2 is a set of coupled convection-diffusion-reaction 

equations with zero diffusion coefficient.   The method may be 

stabilized using the Streamline Upwind Petrov-Galerkin 

(SUPG) stabilization method; the test function iI is replaced 

with i i iI I    where  is a stabilization parameter.  For 

our case (no diffusion) the stabilization parameter is determined 

to be approximately 2
h  .  A commonly used “optimal” value of 

 is found to be 
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which reduces to 2
h since   is a unit vector and Pe . 

Alternatively, the second-order discrete ordinates equations 

may be used.  The second-order formulation has the advantage 

of being naturally diffusive and does not require additional 

stabilization.  It also involves half as many unknowns as the 

first-order formulation.  It has the comparative disadvantage of 

generating a less sparse matrix.  Additionally, the second-order 

form has issues with void regions where the opacity approaches 

zero.  While the first-order formulation allows for rapid solution 

by use of a stepping scheme, the second-order formulation is 

not well-suited to such acceleration techniques.  The ray effect 

mitigation technique proposed here is agnostic as to the choice 

of first- or second-order formulation as well as to the choice of 

quadrature rule. 

PROPOSD RAY EFFECT MITIGATION TECHNIQUE 
The key to the proposed ray effect mitigation technique is 

the recognition of a fundamental shortcoming of the discrete 

ordinates method.  The solution is not invariant under arbitrary 

rotations of the reference frame.  This property is inherent to the 

discrete ordinates method.  Consider a test problem of a square 

duct with a single hot wall.  The medium is purely absorbing.  It 

neither scatters nor emits radiation.  All four walls are black.  

An analytical series solution to this problem has been developed 

by Crosbie and Schrenker [30].  This technique was later 

expanded to inhomogeneous media with isotropic scattering 

[31] although those cases will not be considered here.   

It is proposed that rotational invariance may be approached 

by averaging the solutions found using some number of 

arbitrarily rotated reference frames.  It is observed that ray 

effect oscillations are virtually eliminated when averaging a 

relatively small number of these solutions.  However, a very 

large number of solutions may be required to approach true 

rotational invariance.  The set of discrete rotations may be 

chosen using either a deterministic system or random choice.  

Because an arbitrarily large number of potential rotations is 
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desired and because the development of a deterministic system 

is a non-trivial task that is likely quadrature dependent, only 

stochastic rotations are considered here.  Figure 1 compares 4 

potential solutions to the above problem with an optical side 

length of unity and a scattering albedo of zero. 

 
Fig. 1: S2 energy density predictions for 4 different random 

rotations of the PN-TN quadrature in a square X-Y geometry.  

The medium is purely absorbing with an optical side length of 

unity. 

 

As can be seen from Figure 1, the solution is highly 

dependent upon the choice of reference frame.  Because the 

arbitrary rotations often cause the quadrature to become 

asymmetrical with respect to the geometry’s symmetry plane 

asymmetrical solutions may result.  In a simple geometry such 

as this, it is easy to align the reference frame to avoid these 

kinds of inconvenient and obvious failings.  However, in a more 

complicated arbitrary geometry the errors may be less apparent. 

For cases where the scattering albedo is zero and the walls 

are black like this one, the intensity in each direction is 

completely decoupled from the intensity in every other 

direction.  As a result, the average solution will converge to the 

analytical solution as more and more rotations are considered.  

This is functionally equivalent to increasing the number of 

ordinate directions to an arbitrarily high number.  However, for 

cases in which scattering or reflective boundaries are present, 

the ordinate directions are coupled together via the scattering 

source term.  In these cases, the average does not converge to 

the analytical solution as the number of rotations considered 

approaches infinity.  This is a result of each individual solution 

failing to accurately represent the scattering source term.  From 

here on out, we will concern ourselves only with the above 

scenario but with a scattering albedo of unity rather than zero or 

some intermediary value. 

We will compare four quadrature rule – rotation scheme 

combinations.  The first two (LQN-3d and PNTN-3d) are the 

LQN and PN-TN quadrature rules under uniformly distributed 

random rotations about the origin.  Commonly, for 2-D 

problems, the quadrature is aligned such that symmetry 

eliminates the need to evaluate half of the ordinate directions.  

This is not true under uniformly distributed random rotations 

and thus ordinates in all 8 octants must be used which 

essentially doubles the number of unknowns for a 2-D problem.  

For a fully 3-D problem all 8 octants must be used regardless 

and this disadvantage disappears.  The third combination 

(PNTN-z) seeks to maintain this advantageous use of symmetry 

for 2-D problems.  It is the PN-TN quadrature rule under 

uniformly distributed random rotations about the z-axis.  The 

fourth and final combination is a stochastic quadrature (AR).  

The AR quadrature is defined by generating a specified number 

of uniformly distributed random unit vectors in the first octant.  

This set of vectors is the reflected into each other octant so as to 

enforce invariance under rotations of 90⁰ and allow the use of 

second-order solution methods.  The resulting quadrature is 

then subjected to uniformly distributed random rotations about 

the origin. 

The heat flux is measured along the (top) surface opposite 

the hot wall.  The relative error is defined using the L2 norm of 

the difference between the predicted heat flux and the analytical 

solution provided by Crosbie and Schrenker [30]. 
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RESULTS 
A large number of rotations must be considered before the 

rotationally invariant solution is approached.  The number of 

rotations required is smaller for quadratures with more 

ordinates per octant.  In contrast, only a small number of 

rotations must be considered before the heat flux prediction 

becomes smooth.  Considering that apart from certain limiting 

cases the rotationally invariant solution is not equivalent to the 

exact solution, a sufficiently smooth solution may suffice.  

Further, the average solution approaches the rotationally 

invariant solution in a well understood way which allows for the 

quantification of the degree to which a given smooth solution 

has converged to the rotationally invariant solution. 
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Fig. 2: Relative error in the average LQN-3d heat flux 

prediction as an increasing number of rotations is considered 

 

Generally, as the number of ordinates per octant increases 

both the error and the number of samples required for 

convergence decreases.  Figure 2 demonstrates this for the 

LQN-3d combination of quadrature rule and rotation scheme.  It 

is seen that the expected value of the relative error converges 

relatively slowly and that it plateaus at a certain level which 

corresponds to the difference between the rotationally invariant 

solution and the true solution.  The requirement that the solution 

approach rotational invariance is seen to be very difficult and 

computationally expensive to meet.  Alternatively, if the 

solution is only required to be smooth (ie that the wavelength of 

the ray effect oscillations is small relative to the grid size or that 

the amplitude of the ray effect oscillations is sufficiently small 

relative to the solution magnitude) far fewer samples are 

required.   

 
Fig. 3: Standard deviation of the relative error in the average 

LQN-3d heat flux prediction as a function of the number of 

rotations considered 

 

Statistics upon these samples may then be generated to 

estimate the uncertainty in the average solution relative to the 

rotationally invariant solution.  It is reiterated that the 

rotationally invariant solution is not equivalent to the analytical 

solution if scattering is present. 

 
Fig. 4: Relative error in the average PNTN-3d heat flux 

prediction as an increasing number of rotations is considered 

 
Fig. 5: Standard deviation of the relative error in the average 

PNTN-3d heat flux prediction as a function of the number of 

rotations considered 

 

Similar behavior is observed for the PNTN-3d combination 

as for the LQN-3d combination.  Both the error levels and the 

solution convergence rates are virtually indiscernible. 
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Fig. 6: Relative error in the average PNTN-z heat flux 

prediction as an increasing number of rotations is considered 

 
Fig. 7: Standard deviation of the relative error in the average 

PNTN-z heat flux prediction as a function of the number of 

rotations considered 

 

The error using the PNTN-z combination of quadrature 

rule and rotation scheme is seen to be substantially higher than 

the combinations utilizing rotations about the origin.  In this 

problem, the z-component of each ordinate enters the equations 

as a scaling coefficient for the attenuation rate in that direction.  

If only rotations about the z-axis are considered, only a small 

set of discrete values for this scaling coefficient are included.  

Although the rotations about the z-axis effectively increase the 

resolution in the circumferential angle sufficiently to mitigate 

the ray effects, the low resolution in the azimuthal angle still 

results in errors which dominate the solution. 

The PNTN-z combination is only practical for 2-D 

geometries with appropriate symmetry.  It could be considered a 

relatively inexpensive option for smoothing.  However, the 

accuracy gains the other rotation schemes provide are 

significantly less pronounced. 

 
Fig. 8: Relative error in the average AR heat flux 

prediction as an increasing number of rotations is considered 

 
Fig. 9: Standard deviation of the relative error in the average 

AR heat flux prediction as a function of the number of rotations 

considered 

 

The AR quadrature rule – rotation scheme allows for a 

larger number of intermediate numbers of ordinates per octant.  

The additional stochastic element and lack of enforced 

symmetry further increases the number of samples needed for 

convergence.  It is seen to be generally inferior to the PNTN-3d 

and LQN-3d combinations.  However, it remains superior to the 

PNTN-z combination. 

The convergence toward the analytical solution as the 

number of ordinates per octant increases is quite slow.  

However, the number of samples required to approach 

rotational invariance decreases more rapidly with the number of 

ordinates per octant. 
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Fig. 10: Relative error in the average heat flux prediction 

as a function of the number of ordinates per octant 

 

Figure 10 shows the relative error in the average solution as 

a function of the number of ordinates per octant used to 

generate each solution.  Not all of the average solutions have 

sufficiently converged to the rotationally invariant solution 

which accounts for the scatter.  The uncertainty in the results in 

Figure 10 is plotted in Figure 11. 

 
Fig. 11: Standard deviation of the mean of the samples as a 

function of the number of ordinates per octant 

 

The difference between the PNTN-z combination and the 

AR combination is statistically significant.  As is the difference 

between the AR combination and the other 2 combinations.  

The differences between the PNTN-3d and LQN-3d 

combinations are not statistically significant. 

CONCLUSIONS 
The proposed ray effect mitigation technique allows for 

accurate solution to the radiative transport equation via the 

discrete ordinates method even in the presence of ray effect 

inducing discontinuities.  The technique is trivially 

parallelizable since each solution is completely decoupled from 

all the others.  For non-scattering media, the technique 

converges to the exact solution as the number of samples 

approaches infinity.  The rotationally invariant solution which 

this technique approaches with increasing numbers of samples 

is not equivalent to the analytical solution for problems 

involving scattering media or non-black boundaries.  However, 

it approaches the analytical solution as the number of ordinates 

per octant approaches infinity.  Determining the rate of this 

convergence with any degree of accuracy would require 

significantly more samples than were considered here.  

Generating a smooth solution absent of ray effects requires 

considerably fewer samples than approximating the rotationally 

invariant solution.  The degree to which a smooth solution 

resembles the rotationally invariant solution may be estimated 

by simple statistics. 
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