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ABSTRACT

The discrete ordinates method is a popular and versatile
technique for deterministically solving the radiative transport
which governs the exchange of radiant energy within a fluid or
gas mixture. It is the most common ‘high fidelity’ technique
used to approximate the radiative contribution in combined-
mode heat transfer applications. A major drawback of the
discrete ordinates method is that the solution of the discretized
equations may involve nonphysical oscillations due to the
nature of the discretization in the angular space. These ray
effects occur in a wide range of problems including those with
steep temperature gradients either at the boundary or within the
medium, discontinuities in the boundary emissivity due to the
use of multiple materials or coatings, internal edges or corners
in non-convex geometries, and many others. Mitigation of
these ray effects either by increasing the number of ordinate
directions or by filtering or smoothing the solution can vyield
significantly more accurate results and enhanced numerical
stability for combined mode codes. When ray effects are
present, the solution is seen to be highly dependent upon the
relative orientation of the geometry and the global reference
frame. This is an undesirable property. A novel ray effect
mitigation technique is proposed. By averaging the computed
solution for wvarious orientations, the number of ordinate
directions may be artificially increased in a trivially
parallelizable way. This increases the frequency and decreases
the amplitude of the ray effect oscillations. As the number of
considered orientations increases a rotationally invariant
solution is approached which is quite accurate. How accurate
this solution is and how rapidly it is approached is problem
dependent. Uncertainty in the smooth solution achieved after
considering a relatively small number of orientations relative to
the rotationally invariant solution may be quantified.

INTRODUCTION

One of the most commonly used radiative transport
solution techniques is the method of discrete ordinates [1, 2, 3].
It is so widely used largely because of the intuitive derivation of
the equations and boundary conditions and the theoretical
guarantee that it will converge to the correct solution as the
number of ordinate directions goes to infinity. Unfortunately,
this convergence is slow and the method may produce
unrealistically oscillatory solutions known as ‘ray effects.’
These ray effects occur in a wide range of problems including
those with steep temperature gradients either at the boundary or
within the medium, discontinuities in the boundary emissivity
due to the use of multiple materials or coatings, internal edges
or corners in non-convex geometries, and many others. These
ray effects are inherent to the solution of the discretized
equations and may not be reduced by further spatial mesh
refinement. In fact, spatial mesh refinement has been known to
increase ray effects in some situations.

There have been a number of techniques proposed to help
mitigate ray effects [4, 5, 6]. The most straightforward
approach is to simply increase the number of ordinate
directions. Unfortunately, this approach may involve
prohibitive computational expense.  Schemes which add
ordinate directions adaptively [7, 8, 9] present one potential
solution to this problem. A different approach involves filtering
the solution to reduce or eliminate the spurious ray effect
oscillations [10]. If the discrete ordinates method is to be
modified more fundamentally, other discrete ordinate-like
approaches which incorporate a continuous definition of the
intensity in the angular space may be used [11, 12, 13, 14]. A
separate, minimally intrusive approach is presented here which
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exploits the spatial dependence of the ray effect oscillations on
the definition of the global reference frame.

THE DISCRETE ORDINATES METHOD

The discrete ordinates method is a general term for a class
of solution methods to the radiative transport equation that rely
upon collocation in the angular variables. The transport
equation is satisfied exactly along a set of discrete directions
and a quadrature rule is used to approximate any integrals over
the angular space such as those in the in-scattering term or in
the definitions of the radiative flux and flux divergence. The
choice of quadrature rule is left up to the user and may have a
significant impact upon the quality of results obtained. There
has been substantial research effort applied to the development
and analysis of quadrature rules for integration over the unit
sphere [15, 16, 17]. The solution of the radiative transport
equation using the discrete ordinates method may be found by
stepping through the domain [11, 18, 19, 20]. This is easily
accomplished in structured meshes. However, in unstructured
meshes, this solution technique may involve significant
additional overhead. The discrete ordinates method has also
been applied to unstructured meshes using stepping schemes
and other more general solution techniques [21, 22, 23].

For a given angular quadrature, the integral in the in-
scattering term may be approximated as a summation as shown
in Equation 1.
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The weights and nodes of the quadrature scheme are W,

and Qi respectively. The weights are normalized such that they

sumto 47 .

In this way, it is trivial to see that the transport equation
may be written as a system of linear first order equations in the
ordinate directions.
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With diffuse walls, this equation is subject to the boundary
condition
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Since the equation is first order, a boundary condition is only

required on half the boundary for each directional intensity.

The boundary condition above only applies if 7. o] >0. That

is, we only apply a condition on the intensity leaving an opaque
surface.

The first-order discrete ordinates equation has stability
problems when using the Galerkin finite element method.
Equation 2 is a set of coupled convection-diffusion-reaction
equations with zero diffusion coefficient. The method may be
stabilized using the Streamline Upwind Petrov-Galerkin

(SUPG) stabilization method; the test function fi is replaced

with |~. +z§2i §I~| where 7 is a stabilization parameter. For

our case (no diffusion) the stabilization parameter is determined
to be approximately "5 . A commonly used “optimal” value of
7 is found to be
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which reduces to 5 since Q) is a unit vector and Pe —> 0.

Alternatively, the second-order discrete ordinates equations
may be used. The second-order formulation has the advantage
of being naturally diffusive and does not require additional
stabilization. It also involves half as many unknowns as the
first-order formulation. It has the comparative disadvantage of
generating a less sparse matrix. Additionally, the second-order
form has issues with void regions where the opacity approaches
zero. While the first-order formulation allows for rapid solution
by use of a stepping scheme, the second-order formulation is
not well-suited to such acceleration techniques. The ray effect
mitigation technique proposed here is agnostic as to the choice
of first- or second-order formulation as well as to the choice of
quadrature rule.

PROPOSD RAY EFFECT MITIGATION TECHNIQUE

The key to the proposed ray effect mitigation technique is
the recognition of a fundamental shortcoming of the discrete
ordinates method. The solution is not invariant under arbitrary
rotations of the reference frame. This property is inherent to the
discrete ordinates method. Consider a test problem of a square
duct with a single hot wall. The medium is purely absorbing. It
neither scatters nor emits radiation. All four walls are black.
An analytical series solution to this problem has been developed
by Crosbie and Schrenker [30]. This technique was later
expanded to inhomogeneous media with isotropic scattering
[31] although those cases will not be considered here.

It is proposed that rotational invariance may be approached
by averaging the solutions found using some number of
arbitrarily rotated reference frames. It is observed that ray
effect oscillations are virtually eliminated when averaging a
relatively small number of these solutions. However, a very
large number of solutions may be required to approach true
rotational invariance. The set of discrete rotations may be
chosen using either a deterministic system or random choice.
Because an arbitrarily large number of potential rotations is
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desired and because the development of a deterministic system
is a non-trivial task that is likely quadrature dependent, only
stochastic rotations are considered here. Figure 1 compares 4
potential solutions to the above problem with an optical side
length of unity and a scattering albedo of zero.
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Fig. 1: S, energy density predictions for 4 different random
rotations of the PN-TN quadrature in a square X-Y geometry.
The medium is purely absorbing with an optical side length of

unity.

As can be seen from Figure 1, the solution is highly
dependent upon the choice of reference frame. Because the
arbitrary rotations often cause the quadrature to become
asymmetrical with respect to the geometry’s symmetry plane
asymmetrical solutions may result. In a simple geometry such
as this, it is easy to align the reference frame to avoid these
kinds of inconvenient and obvious failings. However, in a more
complicated arbitrary geometry the errors may be less apparent.

For cases where the scattering albedo is zero and the walls
are black like this one, the intensity in each direction is
completely decoupled from the intensity in every other
direction. As a result, the average solution will converge to the
analytical solution as more and more rotations are considered.
This is functionally equivalent to increasing the number of
ordinate directions to an arbitrarily high number. However, for
cases in which scattering or reflective boundaries are present,
the ordinate directions are coupled together via the scattering
source term. In these cases, the average does not converge to
the analytical solution as the number of rotations considered
approaches infinity. This is a result of each individual solution
failing to accurately represent the scattering source term. From
here on out, we will concern ourselves only with the above
scenario but with a scattering albedo of unity rather than zero or
some intermediary value.

We will compare four quadrature rule — rotation scheme
combinations. The first two (LQN-3d and PNTN-3d) are the
LON and PN-TN quadrature rules under uniformly distributed
random rotations about the origin. Commonly, for 2-D
problems, the quadrature is aligned such that symmetry

eliminates the need to evaluate half of the ordinate directions.
This is not true under uniformly distributed random rotations
and thus ordinates in all 8 octants must be used which
essentially doubles the number of unknowns for a 2-D problem.
For a fully 3-D problem all 8 octants must be used regardless
and this disadvantage disappears. The third combination
(PNTN-2) seeks to maintain this advantageous use of symmetry
for 2-D problems. It is the PN-TN quadrature rule under
uniformly distributed random rotations about the z-axis. The
fourth and final combination is a stochastic quadrature (AR).
The AR quadrature is defined by generating a specified number
of uniformly distributed random unit vectors in the first octant.
This set of vectors is the reflected into each other octant so as to
enforce invariance under rotations of 90° and allow the use of
second-order solution methods. The resulting quadrature is
then subjected to uniformly distributed random rotations about
the origin.

The heat flux is measured along the (top) surface opposite
the hot wall. The relative error is defined using the L2 norm of
the difference between the predicted heat flux and the analytical
solution provided by Crosbie and Schrenker [30].

(0~ ) ¢
[ (@) x

(5)

RESULTS

A large number of rotations must be considered before the
rotationally invariant solution is approached. The number of
rotations required is smaller for quadratures with more
ordinates per octant. In contrast, only a small number of
rotations must be considered before the heat flux prediction
becomes smooth. Considering that apart from certain limiting
cases the rotationally invariant solution is not equivalent to the
exact solution, a sufficiently smooth solution may suffice.
Further, the average solution approaches the rotationally
invariant solution in a well understood way which allows for the
quantification of the degree to which a given smooth solution
has converged to the rotationally invariant solution.
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. Lan-3d Statistics upon these samples may then be generated to

' ' ] estimate the uncertainty in the average solution relative to the
rotationally invariant solution. It is reiterated that the
rotationally invariant solution is not equivalent to the analytical
solution if scattering is present.
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Fig. 2: Relative error in the average LQN-3d heat flux
prediction as an increasing number of rotations is considered
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Generally, as the number of ordinates per octant increases ] ‘ .,
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both the error and the number of samples required for n,
convergence decreases. Figure 2 demonstrates this for the Fig. 4: Relative error in the average PNTN-3d heat flux
LQN-3d combination of quadrature rule and rotation scheme. It prediction as an increasing number of rotations is considered
is seen that the expected value of the relative error converges . PATH-d

relatively slowly and that it plateaus at a certain level which
corresponds to the difference between the rotationally invariant
solution and the true solution. The requirement that the solution
approach rotational invariance is seen to be very difficult and
computationally expensive to meet. Alternatively, if the
solution is only required to be smooth (ie that the wavelength of
the ray effect oscillations is small relative to the grid size or that
the amplitude of the ray effect oscillations is sufficiently small
relative to the solution magnitude) far fewer samples are
required.
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Fig. 5: Standard deviation of the relative error in the average
PNTN-3d heat flux prediction as a function of the number of
rotations considered
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Similar behavior is observed for the PNTN-3d combination
as for the LQN-3d combination. Both the error levels and the
solution convergence rates are virtually indiscernible.
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Fig. 3: Standard deviation of the relative error in the average
LQN-3d heat flux prediction as a function of the number of

rotations considered
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Fig. 6: Relative error in the average PNTN-z heat flux
prediction as an increasing number of rotations is considered
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Fig. 7: Standard deviation of the relative error in the average
PNTN-z heat flux prediction as a function of the number of
rotations considered

The error using the PNTN-z combination of quadrature
rule and rotation scheme is seen to be substantially higher than
the combinations utilizing rotations about the origin. In this
problem, the z-component of each ordinate enters the equations
as a scaling coefficient for the attenuation rate in that direction.
If only rotations about the z-axis are considered, only a small
set of discrete values for this scaling coefficient are included.
Although the rotations about the z-axis effectively increase the
resolution in the circumferential angle sufficiently to mitigate
the ray effects, the low resolution in the azimuthal angle still
results in errors which dominate the solution.

The PNTN-z combination is only practical for 2-D
geometries with appropriate symmetry. It could be considered a
relatively inexpensive option for smoothing. However, the
accuracy gains the other rotation schemes provide are
significantly less pronounced.
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Fig. 8: Relative error in the average AR heat flux
prediction as an increasing number of rotations is considered
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Fig. 9: Standard deviation of the relative error in the average
AR heat flux prediction as a function of the number of rotations
considered

The AR quadrature rule — rotation scheme allows for a
larger number of intermediate numbers of ordinates per octant.
The additional stochastic element and lack of enforced
symmetry further increases the number of samples needed for
convergence. It is seen to be generally inferior to the PNTN-3d
and LQN-3d combinations. However, it remains superior to the
PNTN-z combination.

The convergence toward the analytical solution as the
number of ordinates per octant increases is quite slow.
However, the number of samples required to approach
rotational invariance decreases more rapidly with the number of
ordinates per octant.
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Fig. 10: Relative error in the average heat flux prediction
as a function of the number of ordinates per octant

Figure 10 shows the relative error in the average solution as
a function of the number of ordinates per octant used to
generate each solution. Not all of the average solutions have
sufficiently converged to the rotationally invariant solution
which accounts for the scatter. The uncertainty in the results in
Figure 10 is plotted in Figure 11.
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Fig. 11: Standard deviation of the mean of the samples as a
function of the number of ordinates per octant
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The difference between the PNTN-z combination and the
AR combination is statistically significant. As is the difference
between the AR combination and the other 2 combinations.
The differences between the PNTN-3d and LQN-3d
combinations are not statistically significant.

CONCLUSIONS

The proposed ray effect mitigation technique allows for
accurate solution to the radiative transport equation via the
discrete ordinates method even in the presence of ray effect

inducing discontinuities. The technique is trivially
parallelizable since each solution is completely decoupled from
all the others.  For non-scattering media, the technique
converges to the exact solution as the number of samples
approaches infinity. The rotationally invariant solution which
this technique approaches with increasing numbers of samples
is not equivalent to the analytical solution for problems
involving scattering media or non-black boundaries. However,
it approaches the analytical solution as the number of ordinates
per octant approaches infinity. Determining the rate of this
convergence with any degree of accuracy would require
significantly more samples than were considered here.
Generating a smooth solution absent of ray effects requires
considerably fewer samples than approximating the rotationally
invariant solution. The degree to which a smooth solution
resembles the rotationally invariant solution may be estimated
by simple statistics.
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