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Fully-Assembled MEMS Limit Surface 
Treatment Options

• limited actuation and restoring forces

– 1 N to ~ 10 mN

• complexity afforded by multiple layers

– deeply buried sliding surface

hub

gear rotation

5 m

sliding interfaces

FIB section 
through hubpolysilicon gear train

500 m

gear 1 (output gear)

gear 6

left/right
actuator

up/down
actuator

50 m
gear 3 
assembly

contacts:

dimples

hubs

teeth



Dugger MRS fall 2007, VPL.ppt:3

DARPA Group Summarized Main Issues in 
MEMS Reliability

MEMS Technology Office, HERMIT Program

• MEMS Industry Group (MIG) Report

• www.darpa.mil/mto/programs/hermit/summaries/mems.html 

Actuators Sensors
Integrated 
Systems

Passive Elements

Stiction (Adhesion) Electric Short/Open Temperature Contamination

Wear Leakage Contamination Package Stress

Electric Short/Open Package Stress Clogging Electric Short/Open

Package Stress Contamination Package Stress Crack Propagation

Contamination Crack Propagation Leakage Deformation

Top Five Failure Modes by Device Type
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Failure Mode is a Function of MEMS Design
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normal contact alone
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Alcohols Reduce Adhesion Between 
Silicon Surfaces

Lower surface tension, limited adsorbed film thickness, and high 
molar volume of alcohols limit capillary adhesion

K. Strawhecker, D.B. Asay, J. McKinney and 
S.H. Kim, Trib. Lett. 19 (2005) p.17-21

ATR-FTIR measurement of adsorbed film 
thickness

• 1-3 monolayers at 0.1 < P/Psat < 0.9
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D.B. Asay and S.H. Kim, Langmuir 23
(2007) pp. 12174 - 12178

 (erg/cm2) V (cm3/mol)

water 72.8 18.1

ethanol 21.8 58.7

1-butanol 24.6 91.2

1-pentanol 24.9 108.7

Si AFM tip on Si
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Vapor Phase Lubrication of Silicon Reduces 
Friction in Macroscale Sliding

No measurable wear for P/Psat ≥ 8%

• corresponds to ~ monolayer coverage from ATR-FTIR data

SiO2 ball on Si 

98 mN load, 1.5 mm/s
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D.B. Asay, M.T. Dugger, J.A. Ohlhausen and 
S.H. Kim, Langmuir (in press)
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+ Automated eXpert Spectral Image Analysis (AXSIA) 

• solve D=C*ST using constrained alternating 
least squares

• constrain to physically realistic solutions

• number of components C is the minimum 
needed to reconstruct the original data, 
minus noise

• no bias or assumptions; rapidly identifies 
subtle changes 

Multivariate Analysis Of SIMS Data Allows 
Detection of Subtle Changes In Chemistry

Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS)

M. Keenan and P. Kotula, Surf. Interface Anal.
36 (2004) p.2433
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ToF-SIMS With Multivariate Analysis Shows 
Formation of High MW Product

Reaction product forms when, and where, it is needed
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MEMS Device Testing in Controlled 
Environments

Device packaged in 24-pin DIP

Process image data to give forces

• adhesion

• static friction

• dynamic friction

dry N2

MEMS Environmental 
Test Chamber

Probe Station and 
Drive Electronics

Timed Image Capture 
Displacement vs Input (V)

10 m

Fad = Funload – Fload + Fr

= a(Vc
2-Vp

2) + kx

Ffr = Fpush – Fpull - Fr

= a(Vslip
2) 

Fd = kx
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Unprecedented Improvements in Operating 
Life are Observed with MEMS Tribometers

MEMS tribometer

• operate < 104 cycles with CF3 monolayers

• no failure in > 108 cycles with alcohol vapor
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D.B. Asay, M.T. Dugger, J.A. Ohlhausen 
and S.H. Kim, Trib. Lett. (in press)
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Wear is Minimized with In Situ Vapor Phase 
Lubrication

Deposit observed adjacent to real contact locations on sidewall of 
MEMS tribometer

29_1_beam08.tifnot tested

200 nm

31_3_beam08.tif108 cycles without failure

deposit

200 nm

100 Hz
500 nN normal load
N2 + pentanol, P/Psat = 0.2
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Increased Operating Life of Gear Train with 
Vapor Phase Lubrication

gear train on aging module
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FOTAS monolayer alone, t50 = 4.7x104

With VPL, device was stopped at 4.8x108

cycles without failure

• 1000 ppmv pentanol, 0 H2O
D. Tanner, Sandia
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Vapor Phase Lubrication of Silicon by 
Tribochemical Reaction

S.M. Wiederhorn and D.E. Roberts, Wear 32 (1975) p.51-72

• reduced friction when abrading silicate glass in alcohols

Y. Hibi and Y. Enomoto, Wear 231 (1999) p.185-194

• alcohols reduce friction when cutting Si3N4

• very low wear rate in “higher” alcohols (4<n<11)

Y. Hibi, Y. Enomoto and A. Tanaka, J. Mat. Sci. Lett. 19 (2000) p.1809-1812

• postulate metal alkoxides condense to polymer and act as lubricant

R-OH

R-OH

R-OH R-OH

R-OH
R-OH

Si or oxidized surface adsorbs  
alcohol

R-OH

R-OH

R-OH

R-OH

R-OH
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if damaged, alcohol re-adsorbs

R-OH

R-OHCxHy

R-OH
R-OH

CxHy

adsorbed species react to form 
high MW product

R-OH
R-OH

Alcohol lubrication observed in machining of bulk ceramics

Key for MEMS lubrication is the ability of the film to 
be replenished from the vapor
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Long term operation of MEMS electrical contacts depends on the 
balance between conductivity and separability

Dynamic Low Force Electrical Contacts

Degradation mechanisms:
• thermal (melting, arcing)
• physical damage 

(adhesion, 
delamination)

• contamination 
(oxidation, segregation)

D.J. Dickrell III, U. Florida
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Electrical Contact Resistance Increases with 
Decreased Contact Force

references available
upon request

• MEMS contact forces ~ N – 100 mN
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Fn = 10 N – 60 mN
Vopen = 0 – 20V
Isource = 0 – 1 A
Accepts all deposited materials
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Resistance degrades
in relatively few (<75) 
repeated contact
cycles

Cyclic Degradation of Electrical Contact 
Resistance

• Build-up of nonconductive, 
carbonaceous material at 
contacts causes 
resistance increase

• Occurs during cold 
switching, but more slowlyAir

Fn = 150 N
Vs = 3.3 V
I = 3 mA
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Pulsed Laser Deposition (PLD) Was Used
to Create Au/Al2O3 Composite Films

• nanocomposite formed 
by PLD or sputtering

• H = 5 GPa (2 GPa for 
electroplated Au)

• reduced plastic 
junction growth
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Percolation Threshold Describes Behavior of 
Au/Al2O3 Composites

Au – ceramic nanocomposites maintain low resistance for ceramic 
concentrations > 50% by volume

• reduce contact welding without segregating species

D.J. Dickrell III, U. Florida, 
in preparation
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Experimental Results

Fn = 100 N

Isrc = 3 mA

N2 ambient

10 cycle average
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Summary

Vapor Phase Lubrication of silicon at room temperature has been 
demonstrated

• linear alcohol (pentanol) results in reduced wear

• ability to replenish lubricant film from the vapor phase

Reduced wear is accompanied by oligomer formation

• tribochemical reaction product forms at real contact locations

• suggests that thermionic emission or a catalytic surface are critical

MEMS electrical contacts require balance between low resistance (high 
contact stress) and low adhesion (low contact stress)

• adsorption and decomposition of hydrocarbons leads to increased contact 
resistance

• optimized film structure (hard yet conductive) could lead to mechanically 
robust electrical contacts for MEMS

Materials solutions to address major reliability issues will increase 
application opportunities for MEMS – and their viability for future 
defense systems
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Backups
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Water Vapor Inhibits VPL with Alcohol 
Above a Critical Concentration Ratio

1000 ppmv H2O observed in non-gettered MEMS packages

• ~3.5% RH at room temperature

• MIL spec for microelectronics is 5000 ppmv

Friction coefficient reduced above 1000 ppmv pentanol, but results in 
measurable wear
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Effects of Competitive Water Adsorption on 
MEMS Tribometer Operation

MEMS tribometer

devices run for 106 cycles or until failure 
(no motion with applied drive signals)

typical of packages 
without desiccant 

• MEMS tribometers operate in mixed 
pentanol-water vapors

• Evidence of surface degradation at 2000 
ppmv pentanol + 1000 ppmv H2O
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Wear is Minimized with In Situ Vapor Phase 
Lubrication

• Without pentanol, devices adhere before significant surface damage 
accumulates

• A few particles observed at 1000 ppmv H2O + 2000 ppmv pentanol

100 Hz
500 nN applied load
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ToF-SIMS Multivariate Analysis Shows Oligomer 
Formation in the Presence of H2O Vapor

High MW product is observed in the wear track, but at lower 
concentration than with pentanol vapor alone
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