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• Kinematics in Principal Coordinates
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Kinematics

• “Strain” – two states
– Deformation gradient

• “Strain Rate” – one state
– Rate of deformation
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Kinematics

• Strains derived from deformation gradient
– Polar Decomposition

– Green-Lagrange

– Seth-Hill
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Kinematics

• Strains in principal coordinates
– Right Stretch Tensor

– Seth-Hill
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Kinematics

• Strains in finite element codes
– Finite deformation finite element codes are solved incrementally

– Approach lends itself well to strains – two states
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Kinematics

• Strain rates
– Strain rates are relatively simple

– But we tend to use the rate of deformation for constitutive 
models (work conjugate issues in a hypoelastic formulations)
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Kinematics

• Rate of Deformation
– Occurs at a point in time – problems for FE codes

– In a finite element solution, when do we calculate it?
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Kinematics

• Midstep Rate of Deformation – Incremental Objectivity
– Hughes and Winget

– Calculate rate of deformation with =1/2
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Kinematics
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Kinematics

• Strong Incremental Objectivity
– Rashid

– Calculate rate of deformation based on logarithmic strain 
increment
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Kinematics

• Numerical Implementation
– Tried a lot of things – all approximate

– Spectral Decomposition – eigenvalues and eigenvectors
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Kinematics

• Numerical Implementation
– Calculate current gradient operator

– Calculate inverse incremental deformation gradient
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discrete gradient operator (also used for divergence)
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Kinematics

• Numerical Implementation
– Form inverse incremental right Cauchy-Green tensor

– Find eigenvalues and eigenvectors
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Kinematics

• Numerical Implementation
– Calculate rate of deformation

• How do we perform the spectral decomposition?
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Eigenvalue/Eigenvector Solver

• Basic approach is in Malvern

• Special case needs special attention
– 2 nearly identical eigenvalues

• Subtle problem
– It is NOT an problem with large deformations

– It is often a problem with small deformations

• If not handled properly it leads to convergence problems
– Bulletproof algorithm
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Eigenvalue/Eigenvector Solver

• Symmetric 3x3 Matrix

– Can be used to represent right stretch, left stretch, right Cauchy-
Green, left Cauchy-Green, strain, etc.

– Can also be used to represent Cauchy stress, Kirchoff stress, 
Second Piola-Kirchoff stress.
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Eigenvalue/Eigenvector Solver

• Eigenvalue problem

• Modified eigenvalue problem
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Eigenvalue/Eigenvector Solver
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• Two nearly identical eigenvalues

• Alternatively

Eigenvalue/Eigenvector Solver
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Eigenvalue/Eigenvector Solver

• Eigenvalues

• Deviatoric eigenvalue problem
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Eigenvalue/Eigenvector Solver

• Asymptotic analysis

• Two cases:
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Eigenvalue/Eigenvector Solver

• Case 1:
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Eigenvalue/Eigenvector Solver

• Case 2:
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Eigenvalue/Eigenvector Solver

• How do we find most distinct eigenvalue?
– Solve for 
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Eigenvalue/Eigenvector Solver

• After most distinct eigenvalue is found...
– Find eigenvector corresponding to this eigenvalue

– Reduce matrix to a 2x2

– Could use quadratic equation, but you will loose accuracy
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Eigenvalue/Eigenvector Solver

• Use Wilkinson shift

• Asymptotic analysis gives
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Eigenvalue/Eigenvector Solver

• Final results
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Eigenvalue/Eigenvector Solver

• Final results
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Numerical Examples

• Randomly generated eigenvalues
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Numerical Examples

• Randomly generated rotation matrix

• Pass A to eigenvalue/eigenvector routine

– Check eigenvalues

– Check eigenvectors (reassemble matrix and check values)

• Do this billions of times
– Keep track of maximum error
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Numerical Examples

Maximum error in eigenvalues – 2 nearly identical eigenvalues

machine
precision



Numerical Examples

Maximum error in matrix entries – 2 nearly identical eigenvalues

machine
precision



Numerical Examples
Distribution of error in numerical algorithm based on Malvern
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The key to the
algorithm is to
solve for the most
distinct eigenvalue
first!



Numerical Examples
Distribution of error in numerical algorithm based on Malvern
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Other Applications

• Polar Decomposition

• Alternative strain measures

• Rate of alternative strain measures (Ogden)

• Rate of rotation

• Consistent tangent moduli for any Green-McInnis stress 
rate?

1
ln ; :

2

ln
 





C
ε ε C

C
U 



Conclusions

• An algorithm was presented that accurately solves for 
eigenvalues and eigenvectors of symmetric 3x3 matrices

• The key to the algorithm is to find the most distinct 
eigenvalue first

• The algorithm is applicable in general purpose numerical 
codes

• Applications are abundant in computational mechanics


