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Motivation and Goals

+ High fidelity solutions for large scale semiconductor device
problems on massively parallel platforms
* Block preconditioners for semiconductor problems
— Developing scalable multilevel preconditioners for coupled
systems with mixed parabolic / elliptic characteristics is
often difficult
— Block preconditioners can be used to produce sub-block
systems that are more amenable to optimal multilevel
methods
— Memory usage can also be reduced to allow larger
problems to be solved
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A‘/‘, Governing Equations

Drift-Diffusion Equations

Electric
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“constitutive” relation
* : electric potential
* n: electron density
* p: hole density
* C: doping profile
* R: generation-recombination term
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A‘/‘, Modifications for Defect Physics

Each additional species adds an additional equation

Vo (uXiVi + DiVX)) = G + Ry, =Yg

Modified Equation for Electric Potential
eV =—qp—n+C)+ >0, ¢ X;

* X, : species concentration

* ¢ :charge of electron

* i : integer charge for species

» Immobile and near immobile species makes problem very stiff
(7 orders magnitude difference in diffusivity)

» Immobile species add ODEs rather than PDEs due to lack of
spatial operators

» Large number of defect species leads to systems with large
block sizes
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‘/ﬁficulties with Semiconductor Device Modeling

* Nonlinear Poisson equation is singularly perturbed

— Doping can be greater than 10720 and the coefficient of the
Laplace operator is very small

» Strong gradients
— Junctions between n- and p-doped materials
— At boundaries for high voltage bias
» Type of transport can be very different in different parts of the domain
— Strongly convective in regions of high gradients
— Diffusion dominated in other regions
* Dynamic range of variables
— Electron and hole densities can vary by 18 orders of magnitude

* Nonlinear coupling between Poisson equation for electric potential
and equations for continuity of electron and hole currents

» Additional species makes the system of equations very stiff

— Radiation defect species (charged and neutral) add equations with
substantially lower mobilities than the carriers
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* FEM solver: Charon (Hennigan, et. al.)
— Drift-diffusion equations, species equations
— Stabilized finite element formulation
— Fully-coupled Newton-Krylov solver
» NEVADA framework (unstructured meshes, /O, etc.)
* Trilinos solvers (Heroux,...)
— Multigrid preconditioner: ML (Tuminaro, Hu, Sala, Gee, Tong)
— Nonlinear solver: NOX (Pawlowski, Kolda,...)
— Linear system solver: AztecOO (Tuminaro, Shadid, Hutchinson, Heroux, ..)
— Direct coarse solver: Amesos (Stanley, Sala) interface with KLU
— ILU preconditioners: Ifpack (Sala, Heroux)
— Matrix redistribution: Epetra (Heroux, ...)
* Load balance: Zoltan (Devine, Hendrickson,...)
* Graph partitioning: METIS and ParMETIS (Karypis)
* Mesh generation: Cubit @ Sandia
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Ny ? ML library: Multilevel Preconditioners

; (R. Tuminaro, J. Hu, M. Sala, M. Gee, C. Tong)
2-level and N-level Algebraic

\

\/

» Generation of the aggregates to produce

a coarser operator » Nonsmoothed aggregation
« Create graph where vertices are * Domain decomposition
block nonzeros in matrix A, smoothers (subdomain GS

» Edge between vertices i and j added and ILU)

if block B,(i,j) contains nonzeros
» Decompose graph into aggregates

+ Construction of restriction/prolongation
operators

» Construction of A, as A, = R, A, P,

Level 2 (36 nodes) Level 1 (9 nodes) Level 0 (3) nodes
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- New Preconditioner in ML for Nonsymmetric Systems
\
(M. Sala and R. Tuminaro)

» Typical choice for smoothing prolongator in smoothed aggregation

o -1 D. P;: tentative prolongator
b= (IT_ wiD A>B D = diag(A)
R=P w;: damping parameter

» Smoothed aggregation preconditioner for nonsymmetric linear systems
P = (I —w;D"'A)P;
Ry = PT(I— AD"'w\")
* Perform restriction smoothing

* Restriction operator does not correspond to transpose of prolongator
for nonsymmetric problems

» Rather than use a single damping parameter, calculate values to
minimize P, and R,
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Weak Scaling Study: Steady-State NPN BJT
1- and 3-level Preconditioners

2x1.5 micron BJT; steady-state 2D drift diffusion bias 0.3V;

initial guess NLP solution -

3-level preconditioner smoothers/solvers: ILU, ILU, KLU
aggregation: METIS/ParMETIS; 125 nodes/aggregate ———————
“NSA”: standard baseline nonsmoothed aggregation

* “EMIN” (“Energy Minimization”): new ML preconditioner
* Run on Sandia Red Storm machine (Cray XT3)
proc [fine grid fine grid 1-level ILU 3-level NSA aaq125]3-level EMIN agg125
size unknowns |ave its per|time per |ave its perltime per ]ave its per|time per
(elements) Newt step |[Newt (s) |Newt step [Newt(s) |Newt step |[Newt (s)
4] 220x165 | 110058 68 3 63 3.5 51 3.4
16| 440x330 | 437913 142 7.4 122 7.1 91 5.6
64] 880x660 1.75M 287 21 198 14 128 8
256| 1760x1320| 6.98M 571 73 318 30 183 15
1024] 3520x2640 27.9M 1145 289 475 73 249 24
4096| 7040x5280| 111.6M 2264 1088 677 173 326 65
8192| 7040x5280 | 111.6M 2347 601 704 140 336 58
* New “EMIN” preconditioner is a significant improvement over baseline NSA Santia
» “time” is time to construct preconditioner and perform linear solve @ 'l‘g}iol’[gg'mes

Weak Scaling Study: 1-level and 3-level (with and without EMIN)
2x1.5 micron NPN BJT Steady-State Drift-Diffusion

* Charon FEM semiconductor device modeling code --
+ 2D steady-state drift-diffusion bias 0.3V

* 3-level AMG preconditioners (ML library): baseline NSA and EMIN

Weak Scaling Study: Average Iterations for Different Preconditioners Weak Scaling Study: Average Time for Ditferent Preconditioners.
2x1.5 micron BJT Steady-State Drift-Diffusion Bias 0.3V 2x1.5 micron BJT Steady-State Drift-Diffusion Bias 0.3V
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A‘/ﬁck Preconditioners for Drift-Diffusion System

* Block Preconditioners
— Apply different methods to different sub-blocks
— Applying multilevel method to full system often difficult
— Can use multilevel designed for one unknown
— ILU much cheaper on sub-blocks than full system

* Block preconditioner for fully-coupled Newton-Krylov
method is an approximation of the Jacobian

+ Jacobian for Drift-Diffusion System

D, ~M,, M,
M
Fpy Ryn (A_§ +Cp + Rpp)

D, Diffusion Matrix

C,,, Cp Convection-Diffusion Matrix

M,,, M, Mass Matrix

R, Rup, Ryn, Ryp Reaction Matrix

Fry, Fpy Drift Velocity Coupling Matrix Sandia
National
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“~/} Block Preconditioners

« Block Jacobi, Block Gauss-Seidel, Block SOR
(1 unknown per block)
— ILU or ML on sub-blocks

A=D-E-F

D is diagonal block

E is negative of blocks below diagonal

F is negative of blocks above diagonal

Mjac =D

Mgs-p=D-E R ST me
Mgs-p=D—-F Fou R,n (I‘f—, +C,+ R,,,))
Mson r = L(D - wE)
Msor- g = (D —wF) D, 0 0
M= |0 (B+Cn+Run) 0
0 0 (% +C,+ RI,,,)
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Preliminary Results: Weak Scaling Study
2x1.5 micron NPN BJT Steady-State Drift-Diffusion

Full Jacobian for preconditioner: 1-level DD ILU and 3-level EMIN2 agg100
Block Gauss-Seidel (Forward): Sub-block iteration ML with EMIN and agg30
Meshes: 220x165 to 1760x1320 elements (4-256 processors)

Weak Scaling Study: Average lterations for Ditferent Preconditioners Weak Scaling Study: Average Time for Different Preconditioners
2x1.5 micron BJT Steady-State Drift-Diffusion Bias 0.3V 2x1.5 micron BJT Steady-State Drift-Diffusion Bias 0.3V
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Next Steps: Operator Split Approximation

*Operator split approximation to convection/diffusion/reaction system
+2x2 block system with n and p in second block
*Apply block preconditioner (Jacobi for this example)

Dw 0 0
M = 0 (% +C, + R’rm) Rnp
0 R, (“ﬁg +C, + Rpp>
D, 0 o] [T 0 0
M=|0 1 of|0 (G+CntRun) Ry
M,
o o 1] |o R, (% +Cy+Ry)
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Next Steps: Operator-split Approximation

 Operator split approximation

o o1 [T 0 0
U L —
M=|o I 0} o % (1+armh) o, 0
M~ -1
0 0 Iflg 0 ZLL(I+At(M,%) C,,)

0 0
(1+A¢(ME) ™ Run)  At(ME) T Ry
AHME) Ry (T4 At(ME)T'R,,)

S O =

* Inexpensive system to solve
— AMG for diffusion solve for psi

— Decoupled convection-diffusion solves for n and p (AMG)
— Reorder to obtain a block diagonal 2x2 system

Sandia
National
Laboratories

~

=

Next Steps

* Drift diffusion with defect species

— Blocks: first block consists of drift-diffusion system,
remaining blocks have one species per block
[DD |
X1
M = X

Xj

* Form Gummel iteration as a preconditioner
» Schur decomposition on 2x2 block system
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! Conclusions

* Block preconditioners seem to be a promising way to
solve the semiconductor device equations
— Easier to solve sub-blocks rather than full system
* Applying multilevel method to full system often difficult
* Can leverage previous work with AMG methods

— Can handle different sub-blocks with different methods
(methods which we hope to be optimal)
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“/, The End
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A*/,FEM for Semiconductor Device Modeling

« Existing commercial codes use FVM
— FVM approaches are fast and robust
» Can use coarser meshes for the same accuracy
— Most common approach: Scharfetter-Gummel
+ derived in 1D

* believed to “introduce a potentially significant amount” of
numerical diffusion for more than 1D (Kramer and Hitchon)

* FEM approach has advantages
— Theoretical error bounds for FE approximations
— Design error estimators for mesh adaptivity methods
— Extension to higher order methods
— Convergence properties for unstructured meshes
— Possible advantages for multi-dimensional problems
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Example Problem: 2D NPN BJT

» 2D NPN Bipolar Junction Transistor

— 2x1.5 microns
— Three contacts

* Voltage bias: emitter at ground
while base and collector voltage

increased
+ Steady-state

collector

base

emitter

Example Doping

slog(Doping)
1.9¢+01
1.0e+01
106400

-8.0e+00
-1.7e+01
base emitter
Electric
P e N ——
Q=
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Extremely Preliminary Results

on the blocks

* 100x75 elem 2x1.5 um BJT
* NLP->0.3V bias; serial runs

* For block preconditioners
using almost a direct solve

« Extremely preliminary parallel result
— 2x1.5um BJT; NLP->0.3V bias
— 1760x1320 elem (7 M unknowns)
— 256 procs on Red Storm
+ 1-level ILU (baseline preconditioner)
» Block GS-F with ML as sub-block iteration

Preconditioner ave its per

Newt step — smoothers gs1/ILU/KLU
LLU(fill=2) 32 — aggregate30 (unks: 2.3M/77K/2580)
ILU(fill=1) 49 — Competitive with 1-level ILU; will be better
ILU(fill=0) 72 for larger problems
Block Jacobi 282 « For sub-blocks, can use ML for one unknown
Block Gauss-Seidel-F 108 « For our system based aggressive coarsening
Block Gauss-Seidel-B 173 ML as preconditioner, cannot use GS as
Block SOR-F:0.7 164 smoother, must use ILU
Block SOR-F:1.3 183 Preconditioner ave iter perftime per
Block SOR-B:0.8 171 Newt step |Newt (s)
Block SOR-B:1.2 184 ILU 668 107

National

Block GS-F (ML subblock) 602 101 @ Sandia
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Weak Scaling Study: Steady-State NPN BJT
1- and 3-level Preconditioners

2x1.5 micron BJT; steady-state 2D drift diffusion bias 0.3V; -

initial guess NLP solution

3-level preconditioner smoothers/solvers: ILU, ILU, KLU

aggregation: METIS/ParMETIS; 125 nodes/aggregate

+ “NSA”: standard baseline nonsmoothed aggregation ———
* “EMIN” (“Energy Minimization”): new ML preconditioner

* Run on Sandia Red Storm machine (Cray XT3)

—_— e

proc [fine grid fine grid 1-level ILU 3-level NSA agg125 |3-level EMIN agg125
size unknowns |ave its per|time per |ave its perJtime per |ave its per|time per
(elements) Newt step |JNewt (s) |Newt step |[Newt(s) [Newt step |[Newt (s)

8] 220x165 110058 73 1.7 67 2 55 2

32] 440x330 | 437913 147 3.9 126 3.9 95 3.2
128] 880x660 1.75M 297 13 231 10 147 6
512] 1760x1320 6.98M 590 40 341 19 206 11
2048] 3520x2640| 27.9M 1181 158 490 41 265 18
8192| 7040x5280| 111.6M 2347 601 704 140 336 58

» “time” is time to construct preconditioner and perform linear solve

* New “EMIN” preconditioner is a significant improvement over baseline NSA@ ﬁg;'igi:al
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Weak Scaling Study: 1-level and 3-level (with and without EMIN)
2x1.5 micron NPN BJT Steady-State Drift-Diffusion

* Charon FEM semiconductor device modeling code --
+ 2D steady-state drift-diffusion bias 0.3V —
————

+ 3-level AMG preconditioners (ML library): baseline
nonsmoothed and EMIN

Weak Scaling Study: Average Iterations for Different Preconditioners Weak Scaling Study: Average Time for Different Preconditioners

2x1.5 micron BJT Steady-State Drift-Diffusion Bias 0.3V 2x1.5 micron BJT Steady-State Drift-Diffusion Bias 0.3V
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* “Time”: construct preconditioner and perform linear solve @ Sandia
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